
1 (16)

Technical Report

Traffic Simulation with Dynamic and Machine

Learning Routing Prediction

Gennaro De Luca, Yinong Chen, Chengxu Liang, Drew Mudry, Gyllian

Gaylor, Hannah Buell, Anik Rahman

School of Computing and Augmented Intelligence

University: Arizona State University

July 2022

2 (16)

Embedded System Design

ABSTRACT

This project develops a traffic simulator that allows students to use a visual programming

language to program a car to navigate through the traffic to travel from point A to point B. The

visual programming language used is the ASU VIPLE (Visual IoT/Robotics Programming

Language Environment). The traffic simulator is developed using Microsoft Unity game engine.

The traffic is generated through mapping New York’s Manhattan traffic dataset into our traffic

simulator to create realistic traffic pattern. Three algorithms are implemented to test the

traversing algorithm effectiveness: (1) Simple Static Dijkstra’s Algorithm using road section

length as graph weights; (2) Dynamic Dijkstra’s Algorithm that takes dynamic traffic into

consideration and recalculates the shortest path at every intersection; (3) Machine-Learning

based Dijkstra’s Algorithm that predicts the best route based on the past traffic dataset training.

Both VIPLE and Unity traffic simulator are performance demanding. We use Intel GNS-V40

processor board to run both VIPLE and Unity traffic simulator. We also run physical robot as

the “avatar” of the simulated robot to show the programmed car moving outside the simulation

into physical space.

Keywords: Dijkstra, VIPLE, Machine learning, Unity Traffic Simulator, traffic

3 (16)

Chapter 1 Introduction

1.1 Introduction
In this work, we describe the system used to calculate the shortest path to a destination in Manhattan,

including the algorithms used to calculate the path, the environment and data sets used for simulating

it, and the simulation experiment. The primary goal of this project is to provide a system for

educational purposes, enabling students to gain practical experience with machine learning, shortest

path algorithms, and traffic simulations. The project was extended with the novel hardware as an entry

to the Intel Cup Competition through cooperation from the team’s students and faculty at Arizona State

University (ASU). The development of this project includes multiple key subgoals, including adopting

the data set and machine learning model, mapping the Manhattan map and its traffic data to Unity

simulator based on the current mapping from Maricopa data, rerouting the traffic density data sent to

the web heat map to VIPLE, creating a new Dijkstra Algorithm implementation that takes AI

predictions of traffic density on each street, and linking VIPLE program and Unity Simulator and their

communication through JSON. This report is organized as follows. Section 2 introduces the Dijkstra

algorithm and describes the applications and implementation of the algorithm. Section 3 discusses the

experiment’s environment, including the platforms the experiment is run on and how it works. Section

4 covers data collection and mapping to describe where the data was sourced and organized. Section 5

discusses data processing, training, and model establishment to explain how the data is used. Section 6

discusses the final experimentation and simulation.

1.2 Related Work
This project builds on works developed by teams at ASU, including an undergraduate honor’s thesis, a

master’s thesis, and other capstone team projects. This section will introduce the key contributions from

these other projects.

1.2.1 A Graph-Based Machine Learning Approach to Realistic Traffic Volume

Generation
This honor’s thesis explores the potential for realistic and accurate generation of hourly traffic volume

with machine learning (ML), using the ground-truth data of Manhattan Road segments collected by the

New York State Department of Transportation (NYSDOT). This work provides a baseline for correctly

determining the shortest route to navigate Manhattan roads that are mapped in the traffic simulator

[1][2][3].

1.2.2 Dynamic Routing Algorithm for Unity Traffic Simulator based on Real

Traffic Data
This master’s thesis and its capstone precursors explores the creation of a simulated environment similar

to but simpler than Google Maps. It focuses on creating realistic traffic data for the Unity Traffic

Simulator and implementing a dynamic routing algorithm in VIPLE. The traffic data is generated from

the Arizona Maricopa County traffic data. This work provides the baseline for the simulated traffic

components of the project. However, those works were targeted at Arizona traffic data, whereas our

project employs Manhattan data and novel ML extensions.

4 (16)

Chapter 2 Dijkstra’s Shortest Path Algorithm

2.1 Introduction
This project uses Dijkstra’s algorithm to calculate the route that the vehicle will take. We provide three

different implementations of Dijkstra’s algorithm which are the static, dynamic, and ML-enhanced

implementations. Each implementation will take a series of weights listed as times which will be used

in calculating the route the vehicle will take. The ML model is used for predicting traffic data. The

corresponding Dijkstra’s algorithm code is implemented as a C# Code Activity in VIPLE. A min heap

is used in the Dijkstra’s algorithm as the data structure to store the nodes, edges, weights, and the

adjacency list information. The output of the C# code activity is stored in two variables, “current” and

“path”. The “current” variable stores the intersection the vehicle is at. The second variable is “path”

which is the planned path to the destination that Dijkstra’s algorithm will calculate using the current

intersection. The implementation takes three inputs, “src”, “dst”, and a JSON file. The JSON file will

contain all the map and traffic data that is received from the simulator and store it into a graph that is

needed to calculate the shortest route. All 3 inputs are necessary to calculate the route from the

destination to the source.

2.2 Static Dijkstra’s Algorithm
The static Dijkstra’s algorithm will calculate the complete path at the beginning of the route and follow

that route without any changes until the vehicle reaches the desired destination [4]. If there is heavy

traffic later in the route due to change over time, this implementation will not change to reflect that.

Rather, it will always follow the predetermined route.

2.3 Dynamic Dijkstra’s Algorithm
The dynamic Dijkstra’s algorithm will calculate the complete path at the beginning of the route as in

the static approach. However, the dynamic approach will recalculate the route as the car arrives at each

intersection to find the new optimal route. By using the new traffic data, it will recalculate the route and

use this new recalculated route if a better route is found [3].

2.4 ML-Enhanced Dijkstra’s Algorithm
The ML-enhanced algorithm will start by using an ML model to predict the traffic data. Using this data

and other necessary information such as the edges, nodes, and weights, the Dijkstra’s algorithm code

activity calculates the complete path.

5 (16)

Chapter 3 Environment

3.1 VIPLE
The environment used in this project is ASU VIPLE (Visual IoT/Robotics Programming Language

Environment). The initial version of VIPLE is based on Microsoft Visual Programming Language

(VPL), which was published in 2006 and adopted by many universities and schools, including Arizona

State University (ASU), for computer science and robotics education [7]. Various simulators have been

implemented in VIPLE, including both desktop simulators and Web simulators [8]. Traffic simulation

is one of the functions that has been recently added to the VIPLE environment.

3.2 Unity
This project focuses on the traffic simulator, which is a desktop simulator developed using the Unity

game engine. The simulator’s appearance is grid-looking and contains different areas on the map.

Yellow cars on the roads are the cars that are spawned by the simulator at any position on the roads

with random driving directions, which can be used to reflect the traffic. The yellow cars can also be

made to reflect an input traffic dataset. The red car is VIPLE programmable, which allows users to

develop programs to drive the red car manually or autonomously.

3.3 Environment Applications
Upon selection of a portion of Manhattan, we required traffic data. The selected roads are mapped to

the traffic simulator according to the geographical position in Manhattan. The real traffic data was

incorporated into the traffic simulator through a JSON data format and the Unity platform where the

traffic simulator is developed.

The traffic simulator is arranged in a grid. The whole traffic simulator is stored as a graph data

structure. Each road is stored as an edge, and intersections are represented as vertices/nodes. The

adjacency list is formed by the neighboring intersections of each edge. The weight for each segment of

road is represented as the Manhattan distance and number of cars on the road. The traffic simulator

generates a JSON format.

6 (16)

To communicate between VIPLE and the traffic simulator, firstly Robot/IoT Controller service needs to

be configured properly to connect the traffic simulator with VIPLE. The image above presents the

proper configuration applied for this project. Port number 1350 is used to connect the main traffic

simulator with VIPLE, which is used for this project. Robot/IoT Message In is the service that can

receive JSON files from the traffic simulator by partnering with the Robot/IoT Controller configured

earlier. Robot/IoT Message Out will be used to send JSON files to the traffic simulator also by

partnering with the Robot/IoT controller that has been configured. The traffic simulator will receive the

JSON messages and respond accordingly.

Most of the control buttons in the menu as

shown above are straightforward to

understand. The Car Controls section’s

buttons will take the red car to those areas

of the map accordingly. The dropdown list

includes different traffic patterns that

control the number of yellow cars on the

map, which is also the traffic density for

the simulator. Camera Controls help to

navigate the traffic simulator to different

areas. “W”, “A”, “S”, “D” from the

keyboard may also use Up, Left, Down,

Right, “Z” can be used for zoom in, and

“X” is used for zoom out. Toggle Traffic

from the Sim Controls section will toggle

yellow cars at 0%, 20%, and 50%

different spawn rates. Toggle Graph will

show up each intersection’s name on the

graph.

The computation of the hourly edge

weights requires (1) hourly traffic volume

data, (2) hourly traffic density data, and

(3) road segment lengths. Since (3) is

static, this can be easily obtained from the road network structure. Although access to (1) is relatively

scarce, we found that the New York State Department of Transportation (NYSDOT) reports hourly

traffic volume counts for a fraction of road segments in Manhattan, New York City (“HDSB Raw

Traffic Data”). Lastly, (2) is not easily recorded, so we did not find any public data for traffic density;

therefore, we set traffic density to be constant, and focus on strictly working with traffic volume

counts.

7 (16)

Chapter 4 Data Collection and Processing

This section details the preprocessing of the dataset, including data extraction, generation, and the

analysis of possible approaches. While there is limited data reported online for hourly traffic, the New

York State Department of Transportation database does have information for a small subsection of

Manhattan streets. There is also a geographical database of the world available, called OpenStreetMap,

that is being used for the detailed geographical elements of this project.

Initially the team encountered the problem of limited reported online data. We discussed three options

for data generation in order to fill this gap. The team’s first approach was based on the hourly high and

low traffic count averages, calculated for any point of interest by a research team at the University of

Virginia, as shown in the figure below. Our team would generate sets of data for each day's entry by

randomizing a point between the calculated high and low points for every hour. This data would then

be sent to the machine learning algorithm.

Another approach the team tried was generating Manhattan data based on the patterns of other similar

US cities. Arizona’s Maricopa County traffic data is similar to Manhattan in that both urban regions are

laid out in a grid. For similar traffic counts, we can look to cities such as San Francisco or Washington

D.C.

A third approach we considered was extrapolating the existing Manhattan traffic data to cover all hours

of the day. Fortunately, the team was eventually able to find sufficiently reported data for Manhattan in

the NYSDOT database. Reported data consists of volume traffic counts over fifteen minute intervals

for approximately 300 traffic stations around the city, and specifically the borough of Manhattan.

Reported data also includes the number of lanes, the street direction, the speed limit, and the street

names. The team’s data comes from the NYSDOT “HDSB Raw Traffic Data” and combines the

reported “SC Speed Data 2021” with the “SC Volume Data 2021”, and the “Historic Traffic Data 1977

- 2020.” The data does have its limitations, as noted in the NYSDOT Traffic Volume Report. Each

traffic count was required to be taken on a weekday, which therefore excludes weekends in these

calculations. Traffic counts were also not permitted to be taken before or after a national holiday, thus

making our data insufficient for holiday traffic and other variance.

Excerpt from “SC Speed Data 2021”:

8 (16)

Excerpt from “SC Volume Data 2021”:

Excerpt from “Historic Traffic Data 1977-1920”:

Volume Data is exclusively captured in the “SC Volume Data 2021” file but it does not give speed limit

information or provide any previous year’s comparison. Thus the files must be used together to draw an

accurate representation of Manhattan traffic.

Our team decided that these three approaches work best in combination. The code and algorithms of

the project were developed on Arizona State University’s VIPLE simulator, a student learning platform.

Showing each of these separate approaches, along with the combined results, will be beneficial to

future students. The implementation of all the approaches will help students learn about variance in

algorithms and will help them to discover optimal solutions for future projects.

Arizona State University’s VIPLE traffic simulator is laid out in a grid, similar to the geographical

street patterns of Manhattan. Thus, a section of the Upper East Side has been taken to fit the model

closely. The streets chosen range from 75th Street to 86th street and 1st Avenue to Park Avenue. After

data generation was completed for these streets, the data was sent to the machine learning model, to

help predict the traffic conditions of Manhattan as a whole.

Manhattan section chosen for data analysis- (East 75th St to East 86th St and 1st Ave to Park Ave):

9 (16)

One challenge with this approach is that

taking street data from a self-contained

subsection does not paint a broad picture of

the city as a whole. For example, nightlife

hotspots may not be as present in the Upper

East Side selected data as they are in other

neighborhoods. Another approach that would

help to incorporate a more broad view of the

city is to pull streets from different areas and

combine them into a simulated graph.

However, this method has its own set of

limitations, including possibly inconsistent

data, since each subsection of Manhattan is

vastly different. In the current project, the

team will be working exclusively with streets

from the Upper East Side of Manhattan.

10 (16)

Chapter 5: Machine Learning Algorithms

Machine learning and artificial intelligence are both powerful tools in computational programming as

they allow you to process large amounts of data. In the case of traffic prediction, there are many

different ML and AI algorithms that can be used to help make predictions based on past data. For our

simulation, we will be using past traffic data that consists of road segments and the volume of cars that

was counted on each street. From this model, we want to be able to predict the traffic patterns for the

streets on our unity map by using the data provided.

Our dataset, found on Kaggle [3] provides us with many different streets and the amount of cars

counted on the segment in a given hour. Below is the DataFrame that was generated from the CSV file

containing all of the data.

As you can see, there is an extremely large amount of data that is contained in this DataFrame. While

this might be overwhelming, it can be simply explained. The ID column contains a unique identifier for

each road segment. These are similar to Segment ID but begin at 1 so we can see how many unique

road segments there are. The Roadway Name represents the name of the road and the From and To

columns tell us where the segment of the roadway is. While the Direction and Date columns may be

self-explanatory with “NB” meaning “North-Bound”, the Time and Count columns might need some

explaining. The Data was collected in hourly increments, such as 2:00-3:00PM. This type of data is

categorical and to visualize hourly data, we converted Time to represent the number of hours since the

day started (ex: 4:00-5:00 AM would be 4). Lastly, Count represents the amount of cars that drove by

the sensors that were placed along the side of the road to collect the data.

When first working with data, it is important to understand how each feature might contribute to the

problem of traffic congestion. In order to better understand our data, it might be useful to plot parts of it

to see if there are any patterns that stand out immediately. Immediately, one might think that time and

traffic congestion may have a present relationship. Below we can see a plot based on cars on the road

and time of day.

While it may be difficult to see, this plot seems to agree with the sentiment that traffic seems to be lighter

during non-business hours as we can see a dip in the amount of cars on the road from 1:00-6:00 AM.

This leads us to believe that while time of day may contribute to traffic congestion, it likely is not the

whole story that can be concluded from our data. Below, we will see plots of north and south bound

traffic to see if they tell a different story.

11 (16)

The beginning of an interesting pattern begins to emerge after looking at the north and south bound

traffic. During business hours, we can see a gap in the road traffic form at around 3K cars with most road

segments being either well above or well below 3K cars in an hour. Let’s see if the pattern continues for

east and west traffic.

12 (16)

For east and west traffic, it appears that there are far fewer road segments that are above the 3K threshold

that appeared for north and south traffic. This pattern is something that can contribute to a traffic

prediction based on direction and time.

There are many different algorithms, such as Neural Networks, Naive Bayes and K-Nearest-Neighbors,

that can be used to make accurate predictions based on previously measured data. While powerful, most

of these algorithms do not quite fit our situation for a traffic simulator for multiple reasons. Neural

Networks are commonly used to process large amounts of data, which we have, but often take lots of

time to be trained as well as computational to do so. Neural networks are also often used with datasets

that have a large amount of features that can contribute to a prediction, which is something we do not

have. Naive Bayesian networks are another option that can be used for prediction but are often used with

predicting events based on other events rather than predicting an amount of traffic that might appear on

a road. K-Nearest-Neighbors (KNN) is another prediction algorithm that is used for pattern recognition.

While KNN is often used for classification problems, it can be also used for regression analysis which

can be useful for traffic prediction. Simply put, KNN is a distance-based regression model that makes

predictions for unknown elements based on their surroundings. A simple example can be found in [11].

When predicting the amount of traffic that may lie ahead at a light, it is important to use both of the

features that we have provided to us by the dataset. These, being time and direction, can be used with

KNN to make a prediction regarding traffic. With KNN, it is important to determine how distance from

each data point is calculated. Distance algorithms such as Manhattan and Euclidean distance are

commonly used, but Hamming distance could be also used if you want to emphasize data points in the

same category (Hamming, Euclidean and Manhattan are explained in the link above).

In order to construct an algorithm that fits our dataset, we wanted to build onto a preexisting algorithm

13 (16)

such as KNN by adding the patterns that we discussed above. To add an emphasis of direction to the

algorithm, current direction as well as potential traffic must be taken into consideration by including

potential traffic that is traveling perpendicular to your route as it has a probability of turning onto your

path. To incorporate time of day, we can modify KNN algorithm to work with both hamming distance

and manhattan distance.

The algorithm works by taking the 3 hour average of the traffic at time, t, for any of the 4 given directions.

Then, the algorithm will combine this with any oncoming traffic that might be from the other two

perpendicular directions that may turn (left or right) onto your direction. This is similar to a running

average but uses the classification concept from KNN to take from like directions.

Chapter 6 Experimentation and Simulation

 This chapter will present the experiments conducted under this project. It includes the Intel Atom

E6x5c processor platform running VIPLE traffic simulation and a robot that runs as a physical avatar of

the simulated robot.

6.1 Overall Experiment System

The Intel GNS-V40 processor board is installed with a Windows 10 operating system that runs VIPLE

software and Unity Traffic simulator. The following figure shows the overall experiment system.

The overall experiment system running on Intel Atom E6x5c

6.2 VIPLE Program Controlling the Traffic Simulation
This dynamic Dijkstra algorithm is the primary way to navigate the simulation. It will be triggered every

time the car approaches the new intersection, and this is the reason it is named "Dynamic". Based on the

current traffic situation obtained from the model at different intersections, the algorithm filters the best

cost path so it could keep the schedule updated.

6.2.1 Simulator Initialization
The simulation program starts with the time-frame identification which is an important index to obtain

the proper traffic pattern.

14 (16)

6.2.2 Receive Map Information from the Simulator
The VIPLE receives the real-time map information from the simulator via the setup, and the map data

will be encoded as a JSON object for the communication between the VIPLE and the simulator.

6.2.3 User Interaction
The user is able to assign the departure and arrival location for the program via the pop-up dialog.

Respectively, in the VIPLE, the departure location is sent to the variable "currentIntersection" and is

stored in the variable "source", and the arrival location is stored in the variable "destination".

15 (16)

6.2.4 ML Model Prediction
 The C# code "UpdateMap" worked as the prediction model in which there is a traffic model stored inside

of the block. It took three variables as input and will output the new schedule for the robot- Including

the variable "g_count" which records the workflow globally, the variable "json" which stores the current

schedule, and the variable "currentTime" which stores the current cost of time.

6.2.5 While-Loop & Dijkstra Algorithm
The program applied the Dijkstra algorithm to generate the shortest path and a while-loop integrated

with it to achieve the dynamic workflow. In the case we are running, the algorithm takes five variables

as the input - the variable "src" stored the starting location entered by the user, and the variable "dst"

worked a similar way but its stored value indicated the destination. Then, the map in terms of JSON goes

through by the variable "json". In the end, the last two variables record data on the global scope,

respectively, the value in the variable "g_count" record the aggregated amount of Dijkstra algorithm

calculation, and the aggregated cost of time stored in variable "duration".

16 (16)

On the output side, the variable "Time" and the variable "source" saved the new cost of the travel and

the current location, respectively. And the shortest path will be interpreted in two different formats - the

shortest-path-included schedule in JSON is transported via the variable "path", and the variable "c_path"

keeps the same content but in the format of a string.

6.3 Middleware Implementing the Controlled Physical Avatar
In our current experiment, we will run the physical avatar robot without drawing the map. In other words,

the physical robot will mimic the driving behaviors of the simulated robot in terms of driving forward,

turning left, and turning right. The robot will be running on a surface with grids that match the traffic

simulation map.

In the VIPLE program, we need to create two robots, with one controlling the simulated robot car and

the other controlling the physical avatar, as shown in Figure 6.2.

17 (16)

Figure 6.2 VIPLE program with two Robot/IoT controllers and logics for the simulated robot and the

physical avatar, respectively.

The two robots can be programmed independently. The simulated robot is the main robot that interacts

with the VIPLE program. For the physical avatar robot, no sensors and no data will be sent from the

robot to VIPLE. VIPLE sends the same driving signals to both simulated and physical robots.

The communication between the VIPLE and the simulated robot and physical robot uses the same JSON

object, as shown in Figure 6.3. Any robot with an open architecture can install a middleware on the robot

processor board to communicate with VIPLE. We have implemented the physical robots using any Intel-

based processor, such as Galileo, Edison, and GNS-V40.

Figure 6.3 The standard communication data format between VIPLE and robots

18 (16)

Chapter 7 Conclusion

The goal of this project is to create an embedded system design that would enable a simulator and a

test car to be able to use the map and traffic data from Maricopa and Manhattan. The purpose of the

simulator is to find the shortest path to navigate from point A to point B using a Machine learning

algorithm that would optimize the path calculated using code created in the VIPLE programming

environment. The machine learning algorithm will make predictions based on the traffic data and

instead of relying on the Dijkstra algorithm to recalculate the route at every intersection, will reduce

the amount of calculations needed to ensure the shortest path. Currently we have plans to improve the

runtime and efficiency of our code. We also intend to improve the accuracy of the predictions done by

the machine learning algorithm against the Manhattan traffic data and that we plan to design more

educational examples of this that would be used to explain things such as graph flow or social media

centrality.

19 (16)

References

[1] 2014 Traffic Data Report for New York State. New York State Department of Transportation.

(2014). Retrieved July 18, 2022, from https://www.dot.ny.gov/divisions/engineering/technical-

services/hds-respository/NYSDOT_Traffic_Data_Report_2014.pdf

[2] New York State Department of Transportation. (n.d.). Department of Transportation. HDSB

Raw Traffic Data. Retrieved July 17, 2022, from

https://www.dot.ny.gov/divisions/engineering/technical-services/highway-data-services/hdsb

[3] New York traffic dataset: https://www.kaggle.com/datasets/new-york-city/ny-traffic-volume-

counts-2012-2013

[4] Zhang, Z., De Luca, G., Archambault, B., Chavez, J., & Rice, B. (2022). Traffic Dataset for

Dynamic Routing Algorithm in Traffic Simulation. Journal of Artificial Intelligence and

Technology, Vol. 2, Issue 3, July 2022. https://doi.org/10.37965/jait.2022.0106

[5] OpenStreetMap. (n.d.). Retrieved July 17, 2022, from https://www.openstreetmap.org/

[6] Venkatanarayana, Ramkumar & Smith, Brian & Demetsky, Michael. (2008). Quantum-

Frequency Algorithm for Automated Identification of Traffic Patterns. Transportation

Research Record: Journal of the Transportation Research Board. 2024. 10.3141/2024-02

[7] Yinong Chen, Gennaro De Luca: “VIPLE: Visual IoT/Robotics Programming Language

Environment for Computer Science Education” , IPDPS Workshops 2016: 963-971.

[8] Y. Chen, G. De Luca Service-Oriented Computing and System Integration: Software, IoT, Big

Data, and AI as Services, 8th edition, Kendall Hunt Publishing, 2022.

[9] Qiang Chen, Yinong Chen, Jinhui Zhu, Gennaro De Luca, Mei Zhang, Ying Guo, “Traffic

light and moving object detection for a guide-dog robot”, The Journal of Engineering 2020

(13), 675-678.

[10] Yingxu Lai, Yinong Chen, Zenghui Liu, Zhen Yang, Xiulong Li, "On monitoring and

predicting mobile network traffic abnormality", Simulation Modelling Practice and Theory

Vol. 50, pp. 176-188 (2015).

[11] Aishwarya Singh, A Practical Introduction to K-Nearest Neighbors Algorithm for Regression

(with Python code), August 2018, https://www.analyticsvidhya.com/blog/2018/08/k-nearest-

neighbor-introduction-regression-python/

https://doi.org/10.37965/jait.2022.0106

