" IRAA.FULTONSCHOOLS OF 5chool of computing, informatics,
engineering t“%g‘i‘-)decision systems engineering

|ntroduction to Engineering Using Robotics Experiments

~http://en.wikipedia.org/w

L ecture 06

9/29/2015 Y Nnong Chen

Combinational and Sequential Circuits

Statel ess Vending Machine Design

Finite State Machine

Examples of Finite State Machines

9/29/2015

Input outpu
a b Carryln CarryOut Sum
0 0 0 0 0 o Stateless: information
0 0 1 0 1 cannot be stored in the
0 1 2 0 1 circuit:
Cl’ . . cl) Cl’ « Output is determined by
. 0 1 . 0 input only;
" 1 0 1 0 * Truth table fully
1 1 1 1 1 specifies the function
N Y \
a D
b i
®~ carryOut

9/29/2015

) SewemaCroits

<+ The circuit stores state Example:
(internal values calcul ated an accumul ator
In the past)

<+ Output Is determined by >
Input and state;

< Finite state machine
specifies the function.

Running
sum

State
4 9/29/2015

Combinational
Circuit

YVYVYY

YVYVYY

Combinational
Circuit

v

v

v

State /

memory

v

9/29/2015

() FinteSaeMaineFsM)

<+ Truth table serves as the specification of
= Combinational circuit (hardware)

< An Finite State Machine serves as the specification of

= asequential circuit (hardware), to be taught in CSE 120,
and

= an event-driven program (software)

6 9/29/2015

ding Machine

“* Problem Definition: Use these US currency coins to purchase
products in the machine;

» Parameters: coins and products

<+ Range of values for each parameter:
= Coains: 1, 5, 10, 25
= Products: sicker, candy, pencil, and marker

<+ Constraints/Relationships /Solution (function table):

Penny (1) | Nickel (5) | Dime (10)

Products Sicker candy pencil marker

7 9/29/2015

Ing Machine

Data

Welcome to Quick Vending Machine

string 4

> AlertDialog®

Calculate

"You have bought a sticker”

Calculate

"You have bought a candy”

Calculate

"You have bought a pencil”

Calculate

"You have bought marker" AlertDialog ’J‘ E g
Calculate

"This machine cannot take this amount”

Data

Please insert a coin

string X

b

| E || <€ Prompt

Switch

Calculate

PN

|

9/29/2015

o

A four-way Intersection has
red/green traffic lights that
are controlled with timers.

Traffic can only move in one
direction at a time: NS
)North-South) or EW (East-
West).

-

0y

traffic light

controller

EW green
NS red

timer expired

EW red
NS green

timer expired

Ine

that has a finite number of discrete states.

Transitions between states are caused by
events, such as:

- the expiration of a timer

- a change In a sensor value

state diagram

timer expired or
emergency signal

state table

EW red
NS green

EW green

current state event next state
NS red

EW grn/NSrd | timer exp EW rd/NS grn
EW rd/NSgrn | timer exp EW grn/NSrd

timer expired or
emergency signal

Canary Wharf Tower,

9/29/2015

13

O Finite State M achine (FSM)

A Finite State Machine is a mathematical model

consisting of afinite number of states, transitions
between states, inputs, and outputs.

Finite State Machines are designed to respond to a
seguence of Inputs (events), such as

coin insertions into a vending machine

mouse-clicks/key strikes during a program’s execution
The arrival of individual characters from a string

Each input causes a transition from one to another state
An output can be associated to an input

hines are often used to dengn

~

* When button pressed:
If state==0pen

- . Open Close then close

else open

» EmEEs _ﬂ

No states required Required states

hines are often used to deg[gn

A garage door opening system

If the door is closed and | press the
button (touch sensor), the door begins
to move up.

When it reaches the top, the door
activates a limit switch (a touch sensor)
and stops.

If the door is open and | press the
button, the door begins to move down.

When it reaches the bottom, the door
activates another limit switch and stops.

s are often used to design

A garage door opening system

block diagram

buttonl
garage

door motor door
controller

limit switch
touch sensor

...we want to design the controller...

S are often used to design

A garage door opening system

states
- door closed
- door open
- door closing
- door opening
events
- button press
- limit switch touched
(closing finished or opening finished)

hines are often used to de§jgn :

button pressed

door
opening

button
presseg

tripped tripped

button
door pressed door
closing opened
button pressed

hines are often used to design

button pressed button

pressed
door \ opening

opening | putton \ Stopped
pressed

button
closing \ pressed door

stopped / closing

button
pressed button pressed

ASU-VPL Implementation if the Garage Door Opener

ain

Main Diagram

Variable

Vanable

String -

Calculate

“The door is opening"

If

state.Status=="Closed"

state.Status=="Opened”
state.Status=="Opening"
| state.Status=="Closing"

Vanable

String

Calculate Print Line

"The door is closing®

P

Variable

String -

Calculate

“The door is opening”

Calculate

“The door is closing”

Vanable

String -

21

>
9/2015

<+ Thefollowing FSM determines whether the number of 1s
Iseven or odd, for agiven binary number, e.g.,
1001010110

= Circlesrepresent states; arrows represent transitions

= |nput is binary number or astring Osand 1s

Start

22

() Examplez Nested Parentness

“+ Thefollowing example tests whether parentheses are properly
nested (up to 3 deep)

(x*(y—2)+2*(y+(x=3*2)))

\% | V: anything but “(” and “)”
“mismatch”

23

If input “(” > count++

If input = “(” = count=1 O
start

If input “)” AND count ==

- count-- If input “)” AND count >1

- count--

24

» Takes quarters and dollars only
<+ Maximum deposit is $1 (or four quarters)
%+ Sodas cost $0.75
» Possible Inputs (Events):
= Deposit quarter (25)
= Deposit dollar (100)
= Push button to get soda (soda)
= Push button to get money returned (ret)

<+ States. 0, 25, 50, 75, 100, and state transits on input

quarter

quarter
return \

soda

soda

quarter
ﬁurn

dolllar

Start return

return quarter

Deposit quarter

Deposit dollar

Push button to get soda (soda)
Push button to return money (ret)

If (Sum>75)
Sum =Sum —-75

quarter
release soda
If Sum < 75, do nothing
Soda dOIlar
If (Sum==75)

release soda

Sum = Sum + 25
Sum = Sum + 100

return

27 9/29/2015

Main

Main Diagram

Calculate

Calculate

value+™"

28

“Your current deposit is * + state.Sum

Pmmptdi?lﬁ@“’

<

Calculate

state.Sum + 25

Calculate

Switch

Calculate

o P>

Calculate

Variable

Int32 =

Vanable

Int32 -

Calculate

Variable

Int32

Vanable

Int32 -

Variable

Calculate

Data

Please take your soda

String

“b

9/29/2015

The Project...

An on-line navigation problem:
solving a maze from the inside.

An on-line algorithm receives its

iInput gradually rather than all at
once.

It must make decisions based on
this partial input.

of Wall Following Robot

http://venus.eas.asu.edu/WSRepository/eRobotic/

@ http://venus.eas.asu.edu/WSRepository/RaaS/MazeNav/ PL~REX @ SilverlightTest X

vi.a

[Reset H Forward J |¥| Manual Control

[Left H Stop H Right]

[Reverse J [Autonomous J

123

42 270 39
) 77
| Execute |

938
I l Default: Forward ~] [Add New Line]
|if sensor.right > -] ' 120 |

| delayed right 50 - |

[else if sensor.forward < v] '60 |

(left 50 -]

< Install ASU Maze into:
C/Documents and Settings/User/Microsoft Robotic Dev Studio 4/samples/Config

Diagram X [SimulatedLaserRangeFinder X |GenericDifferentialD|ive X]

Data

Join
double ~ m P SetDrivePower > L d

If
DistanceMeasurements[50] > 400 double ¥
+ Else

SetDrivePower$> * - g
Data
Type: (left -> double, right -> double)
Data Connections
— value.left LeftWheelPower
oune value.right RightWheelPower

31 9/29/2015

Backward
before
turning

Left
Finished inished

Turning Turned AWV 2 Turning Turned
Left90 Left 1 Left90 Left 2

Left

Touched Touched

FW 1

Turned Turning Turned Turning
Right Right FW 4 Right Right FW 3

2 Right 90 1 :
Finished Touched Right Touched
Finished

Backward
before
turni ng

32 9/29/2015

DistanceMeasured rightFinished

Start <400

Forward
Variable

RightDistance <— DistanceMez

string ...
Resum180
Finished DistanceMeasured Turning
Variable >=rightDistance Left
Pl RightDistance v |{ib>
. 9 leftFinishe
int \/
Resm/ Turned
180 DistanceMeasured Left

<rightDistance

33 9/29/2015

Services
Lego EV3 Color
Lego EV3 Drive
Lego EV3 Drive For Time
Lego EV3 Gyro
Lego EV3 Motor
Lego EV3 Motor By Degrees
Lego EV3 Motor For Time
Lego EV3 Touch »
Lego EV3 Ultrasonic,.-~
Print Line ',""
Robot .
Robot Color Sensor
Robot Distance Sensor
Robot Drive
Robot Light
Robot Motor
Robot Motor Encoder
Robot Sound Sensor

Robot Touch Sensor

Simple Dialog
Text To Speech

Timer

tation of the ‘right-then-left’ FSM-a

Main | Forward | Right90 | Stop | Left180 | Right1go |

Main Diagram Data

Obstacle Detected

String

My Robot 0 Variable

Status
String

Variable

Data Variable

TurningRight

String

Data

TurnedRight

String String

Data

TurninglLeft

String

Variable

RightDistance

Double m

Variable

Status

String
Calculate

“Right distance is: " + value

Variable

Resuming >

String

Status
String

Intel Edison-based robot with
built-in Wi-Fi and Bluetooth

components and a distance
Calculate

"Left distance is: " + value

sensor.

Variable

Calculate

“Left distance is: " + value

Star '[T ~ DistanceMeasured < 400 Turning
—>\ Forward)
Y, L eft

T |eftFinished
Variable Spin180 |
Finished DistanceM easured >= 800
string ...
e v
~ Spin e / Tumned \\
S 180~ DistanceM easured < 800 S Left

35 9/29/2015

Variable
BaseDistance ¥

Variable

Status ~
string ¥ String s«

Forward a
bit then turn

rightFinished

Turning leftFinished Turned Turned
L eft90 S L eft Right

Turning
Right90

'WN

DistanceMeasured
> BaseDistance + 400

Toucr
Touched

Backward
then turn

Lol Right 1
— A — | (U<
DistanceMeasured Forward

DistanceMeasured
> Baquistance +5

36 N Start N 9/29/2015

< BaseDistance -5

Main | Init | Left1 | Right90 | Leftoo | Right1 | Backward | Resetstate | Forward |

Main Diagram

My EV3 Brick 0 Comment

The init block will initialize variables
":’ and start the robot moving forward.

Lego EV3 Ultrasonic g

1

state.Status == "Forward” AND value < state.BaseDistance - 5

Variable

String String ﬂ

While End While Data Variable
Tuminglen g Bacward g Lenso | g Resetstte |2
String String ﬂ ' ‘

Lego EV3 Touch TurningRightl

37 9/29/2015

M aze Navigation Gamewith Artificial I ntelligence

UE L 1 LT T .

start
1. You have two minutes to run the course forward and
return; You can score up to 20 + bonus points, as shown
end on the map;
The farthest position is used for calculating the score;
If forwarding failed in the middle, you can take the robot
to the end position to run the backward part;
Grading Scales: 4. If you use sensor to detect the front wall, + 10% bonus
If you use sensor(s) to detect front and side walls + 20%
bonus points;
6. If you do not touch robot for the return trip, you receive 2
bonus points.

W N

o

	Finite State Machine
	Roadmap: �Evaluation in Design Process
	Combinational Circuits
	Sequential Circuits
	Combinational and Sequential Circuits
	Finite State Machine (FSM)
	Model For a Stateless Vending Machine
	A Stateless Vending Machine
	Why does a coin-operated washing machine take all coins at the same time?
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Finite State Machine (FSM)
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Example 1: Detecting Even or Odd
	Example 2: Nested Parenthesis
	Nested Parentheses �Using an Additional Variable
	Example 3: FSM Vending Machine
	Example 3: FSM Vending Machine
	FSM With Additional Memory
	Example 3: FSM Vending Machine
	Slide Number 29
	Online Programming of Wall Following Robot
	VPL Implementation
	FSM for Hard-Coded Turns using Touch Sensor
	FSM of Robot in a Maze
	Slide Number 34
	Greedy Algorithm based on the First Working Solution
	Right-Wall-Following Algorithm with Error Correcting
	Wall-Following Diagram in VPL
	Maze Navigation Game with Artificial Intelligence

