
Page | 1

IoT and Robotics Problem Solving
in Visual Programming

Laboratory Manual

http://venus.sod.asu.edu/VIPLE/

Yinong Chen and Gennaro De Luca

IoT and Robotics Education Laboratory

Arizona State University

VIP

Introduction to ASU VIPLE, Arizona State University Page | 2

Table of Contents
Chapter 1 Introduction to ASU VIPLE .. 6

Chapter 2 Essentials in ASU VIPLE ... 8

2.1 Basic Constructs in ASU VIPLE .. 8

Exercise 1. Hello World in ASU VIPLE .. 9

Exercise 2. Input and Output in ASU VIPLE ... 9

Exercise 3. A Simple Counter in ASU VIPLE ... 9

Exercise 4. Using While-Loop to implement Counter .. 10

2.2 Activity and Parameter Passing in ASU VIPLE ... 10

Exercise 1. Activity and Parameter Passing .. 10

Exercise 2. Counter as an Activity in ASU VIPLE .. 12

2.3 Implementing finite state machine and event-driven programming 13

Exercise 1. Implement a Vending Machine .. 13

Exercise 2. Implement the Vending Machine Using Events ... 14

Exercise 3. Garage Door Opener (part 1) ... 15

Exercise 4. Garage Door Opener (part 2) ... 16

Exercise 5. Parity Detection .. 17

Chapter 3 Controlling Simulated Robots Using ASU VIPLE .. 18

3.1 VIPLE Robot Services .. 18

3.2 Implementing Maze Navigation Algorithms in Robotics Simulation 20

Exercise 9: Learn the wall following algorithms ... 21

Exercise 10: Program a Web robot to follow the Right-Side-Wall .. 22

Exercise 11: Traversing the maze using two-distance-local-best algorithm 22

3.3 Maze Navigation Algorithms Using Finite State Machine 23

Exercise 1: Understanding the VIPLE Diagram ... 23

Exercise 2: Implement the VIPLE Diagram ... 24

Exercise 3: The Activities of the Two-Distance-Local-Best Algorithm ... 24

Exercise 4: The Main Diagram of the Two-Distance-Local-Best Algorithm 26

Exercise 5: Web Simulator ... 27

Exercise 6: Configuring VIPLE to Use Web 2D Simulator.. 29

Exercise 7: Implement Wall-Following Algorithm in Web Simulator: Main Diagram 30

Exercise 8: Implement Wall-Following Algorithm in Web Simulator: Activities 31

Exercise 9: Implement Two-Distance-Local-Best Algorithm in Web Simulator: Main 32

Exercise 10: Implement Two-Distance-Local-Best Algorithm: Activities 34

Introduction to ASU VIPLE, Arizona State University Page | 3

Chapter 4 Programming Intel Robots Using ASU VIPLE.. 36

4.1 Constructing and configuring your robot .. 36

Exercise 1. Build Your Robot ... 36

Exercise 2. Starting the Program on Edison Robot ... 38

Exercise 3. Pairing Edison Robot with the host computer .. 38

4.2 Sensor testing and remote controlling... 39

Exercises 1. Sensor testing and configuration .. 39

Exercise 2. Drive-Edison Robot-by-wire in ASU VIPLE .. 40

Exercise 3. Improving the driving experience .. 41

4.3 Maze navigation using wall-following algorithm ... 42

Exercise 1. Robot Wall-following maze navigation (main diagram part 1) 42

Exercise 2. Robot Wall-following maze navigation (main diagram part 2) 44

Exercise 3. Write the Init Activity .. 45

Exercise 4. Left1 and Right1 Activities .. 45

Exercise 5. Right90 and Left90 Activities .. 46

Exercise 6. Backward and Forward Activities .. 46

Exercise 7. ResetState Activity ... 47

4.4 Maze navigation using local best heuristic algorithm... 47

Exercise 1. Solving the Maze Using the Two-Distance Algorithm .. 47

Exercise 2. Controlling Intel Edison Robot in ASU VIPLE ... 49

Exercises 3. Implementing the Activities Used in the ASU VIPLE Program 49

Exercises 4. Using a simplified finite state machine... 50

4.5 Implementing maze navigation using event-driven programming 51

Exercise 1. Redesign Left90 activity using event-driven programming style.................................. 51

Exercise 2. Redesign Left1 and Right90 using event-driven programming style 52

Exercise 3. Redesign the other activities using event-driven programming style 52

Exercise 4. The Main diagram based on the event-driven activities .. 52

4.6 Implementing sumo robot ... 53

Exercise 1. Basic sumo-robot program .. 53

Exercise 2. Advanced sumo-robot program ... 54

Chapter 5 Controlling EV3 Robots Using ASU VIPLE .. 55

5.1 Working with EV3 robots ... 55

Exercise 1. Finding sensor reading from EV3 Brick .. 55

Exercise 2. Finding sensor reading by a program ... 56

Exercise 3. Connecting robot to Computer via Bluetooth or Wi-Fi .. 56

Exercise 4. Make your robot move ... 58

Introduction to ASU VIPLE, Arizona State University Page | 4

5.2 Remote control of EV3 robots .. 59

Exercise 1. Drive-EV3-by-wire in ASU VIPLE ... 59

Exercise 2. Improving the Driving Experience ... 60

5.3 Line-following program in ASU VIPLE .. 61

Exercise 1. Installing a color sensor ... 61

Exercise 2. Line-follower ... 61

5.4 Sumo Robot Programming ... 62

Exercise 1: Basic Sumo-Robot Algorithm .. 63

Exercise 2: Adding a touch sensor to the sumo-robot ... 63

Exercise 3: Adding the ultrasonic sensor to the sumo-robot ... 64

5.5 Wall-following program in ASU VIPLE .. 64

Exercise 1. EV3 Robot Wall-following maze navigation in ASU VIPLE (main diagram) 64

Exercise 2. Write the Init Activity .. 66

Exercise 3. Write the Left1 Activity ... 66

Exercise 4. Write the Right90 Activity ... 67

Exercise 5. Write the Left90 Activity ... 67

Exercise 6. Write the Right1 Activity ... 67

Exercise 7. Write the Backward Activity.. 67

Exercise 8. Write the ResetState Activity ... 68

Exercise 9. Write the Forward Activity .. 68

Exercise 10. Configure Sensors in Wall-following maze navigation in ASU VIPLE 68

5.6 Wall-following program using event-driven programming style 69

Exercise 1. Redesign Left90 activity using event-driven programming style.................................. 69

Exercise 2. Redesign the other activities using event-driven programming style 70

Exercise 3. The Main diagram based on the event-driven activities .. 70

5.7 Maze navigation using local best heuristic algorithm... 71

Exercise 1. Implementing the Main diagram of the two distance algorithm 71

Exercise 2. Implementing SensorRight90 ... 73

Exercise 3. Implementing the other activities ... 73

Microsoft VPL is a milestone in software engineering and robotics from many aspects. It is service-

oriented; it is workflow-based; it is event-driven; it supports parallel computing; and it is a great

educational tool that is simple to learn and yet powerful and expressive.

Introduction to ASU VIPLE, Arizona State University Page | 5

Sponsored by two Innovation Excellence awards from Microsoft Research in 2003 and in 2005, Dr.

Yinong Chen participated in the earlier discussion of service-oriented robotics at Microsoft. Microsoft

VPL was immediately adopted by Chen in developing the freshman course CSE101 in 2006. The course

grew from 70 students in 2006 to over 350 students in 2011. The course was extended to all students in

Ira A. Fulton Schools of Engineering at ASU and was renamed FSE100, which is offered to thousands of

freshman engineering students now.

Unfortunately, Microsoft stopped developing and supporting VPL recently, which lead to our FSE100

course, and many other schools’ courses using VPL, without further support. Particularly, the current

version of VPL does not support LEGO’s third generation of EV3 robot, while the second generation NXT

is out of the market.

To keep our course running and also help the other schools, we take the challenge and responsibility to

develop our own visual programming environment, ASU VIPLE, based on the IoT and Robot as a Service

concept. The purpose of this project is to provide a free environment supporting the VPL development

community in education and research. To serve this purpose, ASU VIPLE keeps the great features that

VPL has and provides a similar user interface and functionality, so that the MSRDS and VPL development

community can use ASU VIPLE with no learning curve. ASU VIPLE does not replace Microsoft VPL.

Instead, it extends VPL in its capacity to connect to different physical robots, including EV3 and Intel-

based open architecture robots.

Robot as a Service and the ASU VIPLE environment are designed and developed by Yinong Chen and

Gennaro De Luca, with contributions from Calvin Cheng, Megan Plachecki, and Sami Mian. ASU VIPLE

documents, software, and sample code can be downloaded from the ASU Web Service and Application

repository. The direct link is http://venus.sod.asu.edu/VIPLE/

Introduction to ASU VIPLE, Arizona State University Page | 6

Chapter 1

Introduction to ASU VIPLE

ASU VIPLE uses the same computing model as Microsoft VPL. The program is running on a Windows

computer, a desktop, a laptop, or a tablet. The computer sends commands to control the robot

actuators (motors) and receives the sensory data and motor feedback from the robot. The data between

the computer and the robot is encoded in a JSON object which is in plain text format. It supports Wi-Fi,

Bluetooth and USB connections between the main computer and the robot. ASU VIPLE supports EV3 and

any self-developed robots. We have developed different robots based on Intel architecture, the Linux

operating system, and the Windows operating system.

Figure 1.1 compares the basic activities between ASU VIPLE and Microsoft VPL. VIPLE implemented most

basic activities in VPL and implemented additional While, Break, and End While activities to facilitate

loop building, which can reduce the circular paths in VPL diagrams.

Figure 1.1. Activities and services: ASU VIPLE versus Microsoft VPL

As can be seen that VIPLE has similar programming constructs and ca be used for the same kinds of

applications using these basic activities.

ASU VIPLE Basic Activities

Microsoft VPL

Basic Activities

Introduction to ASU VIPLE, Arizona State University Page | 7

The usability of a language largely depends on the availability of library functions or called services.

Figure 1.2 shows the ASU VIPLE services and Microsoft VPL services. Microsoft VPL implemented

multiple sets of vendor services, including general service, generic robot services, iRobot services, LEGO

NXT services, and simulated services. The general services and generic robot services include Log, Text

to Speech, SpeechRecognizer, Simple Dialog, Direction Dialog, Timer, etc. VPL many implemented

multiple vendor services, such as LEGO NXT services, iRobot services, HiTechnic services, and simulated

services.

Figure 1.2. ASU VIPLE services versus Microsoft VPL services

In the current VIPLE version, three sets of services are implemented only. The first set is a list of general

services, including the Simple Dialog, Key Press Event (Direction Dialog), Text To Speech, Print Line (Log),

Timer, and RESTful services. The second set of services is for EV3 robots, which correspond to the NXT

services in Microsoft VPL. The third set of services are used to connect to generic robots, sensors, and

motor services. The general services can be used not only for robots, but also for general purpose

applications. The addition of LEGO EV3 services allows the VPL developers who used NXT robots to use

the new LEGO EV3 robots. The generic robot services allow the developers to use VIPLE to connect to an

open architecture robot. In Microsoft VPL, DSS services developed specifically for MSRDS can be added

into the VPL service list. In ASU VIPLE, RESTful services can be accessed in VIPLE diagram. As RESTful

services are widely used in today’s Web application development, the access to RESTful services extends

the capacity of VIPLE to a wide range of resources. ASU VIPLE does not have simulated serviced at this

time. A simulation environment is being implemented.

Many improvements are made in ASU VIPLE. For example, ASU VIPLE use state.varaible consistently. In

VPL, local variables (the location of a variable’s use has a direct link to the variable) use variable name

only, while and global variables use state.variable syntax. It is not easy for inexperienced programmer to

recognize the scope of variables and often causes confusion.

ASU VIPLE EV3 and Generic Services Microsoft VPL Generic, Vendor, and Simulated Services

Introduction to ASU VIPLE, Arizona State University Page | 8

Chapter 2

Essentials in ASU VIPLE

Download ASU VIPLE software, sample codes, and tutorial at:

http://venus.sod.asu.edu/VIPLE/

Unzip and open the folder Release, start the ASU VIPLE software from the file:

VisualProgrammingEnvironment. Now, you can learn ASU VIPLE by following the tutorial exercises.

ASU VIPLE is general purpose programming language and is turning-complete in its capacity. It can be

used for any kind of computation tasks. In ASU VIPLE, A program is represented as a diagram of

workflow, and the components are defined as activities in the diagram. We will learn the language

through a series of examples and exercises.

2.1 Basic Constructs in ASU VIPLE

There are 10 basic activities that can be used for constructing programs. These activities are briefly

explained in Figure 2.1, and they will be exercised in the following programming exercises.

Figure 2.1. Basic Activities in ASU VIPLE

◼ Activity: for creating components

◼ Variable: supports basic types (Int32, Double, String, Boolean, etc.)

◼ Calculate: Calculate the value of typical expression that is

supported by C++, Java

◼ Data: Introducing constant values in regular programming language

◼ Join: proceeds when all threads arrive; Can be used for parallel data
or threads.

◼ Merge: proceeds when one of the data or threads arrives. It can be
used for creating the return point of a loop;

◼ If: same as regular programming language construct; It allows
multiple conditions.

◼ Switch: same as regular programming language construct;

◼ While: start a loop; Break: exits a loop, and
End While: returns to While

http://venus.eas.asu.edu/WSRepository/ASU-VPL/

Introduction to ASU VIPLE, Arizona State University Page | 9

Exercise 1. Hello World in ASU VIPLE

ASU VIPLE is similar to Microsoft VPL not only in concepts but also in programming. It is our intention to

have Microsoft VPL programmers use ASU VIPLE with little learning. We now show examples of basic

programming in ASU VIPLE. We start with the Hello World program. Figure 2.2 shows the two versions

of code using VPL and ASU VIPLE. The two diagrams look the same. However, ASU VIPLE has simplified a

couple of steps: it automatically changes the type to String after a string is entered, and the default null

value step in Microsoft VPL is eliminated.

 (a) (b)

Figure 2.2. Hello world program in (a) Microsoft VPL and (b) ASU VIPLE

Exercise 2. Input and Output in ASU VIPLE

Now, we use ASU VIPLE to implement the examples that we have implemented Microsoft VPL in the

previous sections. Simple Dialog service in ASU VIPLE can be used for both input and output. The

diagram in Figure 2.3 uses Simple Dialog for input first. The connection type is PromptText. The

following three dialog boxes in Figure 3 show examples of the data connection, input prompt when

executing the code, and the output. The same diagram also uses Simple Dialog for output when the

connection type is set to AlertDialog.

Figure 2.3. Using Simple Dialog to perform input and output

Exercise 3. A Simple Counter in ASU VIPLE

Now, we can implement a simple counter in ASU VIPLE diagram, as shown in Figure 2.4. A similar

implementation of the counter activity in Microsoft VPL can be found in our VPL tutorial.

Introduction to ASU VIPLE, Arizona State University Page | 10

Figure 2.4. A simple counter

Exercise 4. Using While-Loop to implement Counter

We formed a loop by ourselves in the previous exercise. We can use a built-in loop in ASU VIPLE to make

the program structure simpler. The diagram is shown in Figure 2.5.

Figure 2.5. Using while-loop for implementing the counter

Quiz: What is the main different between this counter and the counter in the previous exercise?

2.2 Activity and Parameter Passing in ASU VIPLE

Basic Activity and Activity are building blacks of diagrams or flowchart. Data transfer between the

activities are through global variables and parameter passing.

Exercise 1. Activity and Parameter Passing

In this exercise, we create a simple main and an activity. We illustrate the communication between the

main and the activity through (2) global variables and (2) parameter passing.

Introduction to ASU VIPLE, Arizona State University Page | 11

In the program, String value Yinong Chen is assigned to OutVariable and the value is passing into the

activity. The String value Hello is passed into the activity through the input put of the activity. The return

value of the activity is assigned the output port and passed back to the Main diagram. Notice that the

variables are global, and the Main diagram can also access the innerVariable to retrieve it value.

(a)

(b)

Figure 2.6. (a) Main diagram and (b) an activity

To use parameter passing, we need to define a parameter for the activity, and use “value” as the data

connection to the activity, as shown in Figure 2.6 (c). The Main diagram and the activity code are given

Figure 2.6(d).

Introduction to ASU VIPLE, Arizona State University Page | 12

Figure 2.6. (c) Define a parameter and (d) Main diagram and SayHello activity

Exercise 2. Counter as an Activity in ASU VIPLE

As a more complex example, Figure 2.7 shows the ASU VIPLE program that implements: (a) a Main

diagram and (b) a counter activity. The activity takes an input N in the main diagram. In the activity

CountToN, it starts from 0 and adds 1 in each iteration. It stops when the counter value is equal to N.

Text to Speech service is used to read out the numbers in the activity, and Simple Dialog Service is used

to print the counted numbers. As can be seen in the activity diagram, both data output and notification

(event) are supported in ASU VIPLE. A similar implementation of the counter activity in Microsoft VPL.

Introduction to ASU VIPLE, Arizona State University Page | 13

(a)

(b)

Figure 2.7. ASU VIPLE program example: (a) main program and (b) activity

Quiz: What is the main different between this counter and the counter in the previous two exercises?

2.3 Implementing finite state machine and event-driven programming

Although ASU VIPLE can be used as a general programming language, its strength is in event-driven programming

that can response to a sequence of events. The event-driven applications are best described by finite state machines

consisting of states and transitions between the states. The transitions are triggered by events. We will start to use

ASU VIPLE for solving event-driven problems.

Exercise 1. Implement a Vending Machine

Given a Finite State Machine (FSM) in Figure 2.8, we first implement the requirement of the vending

machine without using event-driven programming.

Introduction to ASU VIPLE, Arizona State University Page | 14

Figure 2.8. Finite State Machine of a vending machine

A sample VIPLE diagram is shown in Figure 2.9. We use Simple Dialog to take input

Figure 2.9. ASU VIPLE program of the vending machine

Exercise 2. Implement the Vending Machine Using Events

Change the program to use the Key Press Event as the inputs (triggers) of the finite state machine. Use

the following keys as inputs.

• q for quarter

• d for dollar

• r for return

quarter
dollar

Sum = Sum + 25

Sum = Sum + 100

quarter

dollar
soda

If (Sum== 75)

release soda

return

If (Sum>75) Sum = Sum – 75

release soda

If Sum < 75, do nothing

0 > 0

Introduction to ASU VIPLE, Arizona State University Page | 15

• s for soda

Since you have separate key inputs, you do not need the Switch activity.

Exercise 3. Garage Door Opener (part 1)

Given a Finite State Machine (FSM) in the following diagram, implement a simulated garage door control

logic in ASU VIPLE.

Figure 2.10. Finite state machine of a garage door opener

The remote controller is a touch sensor or a key press event, and the limit sensor is a build-in sensor in

the motor. When the door stop, the limit sensor will generate a notification. You can start your program

similar to the maze navigation program we learned in Microsoft VPL, as shown in the diagram below.

button pressed

door

closing
door

opened

door

closed

door

opening

button pressed

limit

tripped
limit

tripped

opening

stopped

button

pressed

closing

stopped

button

pressed

button

pressed

button

pressed

Introduction to ASU VIPLE, Arizona State University Page | 16

Figure 2.10. ASU VIPLE program (part 1) of the garage door opener

Exercise 4. Garage Door Opener (part 2)

The limit sensor built-in the motor can be simulated as follows. When key m is pressed while the door is opening or

is closing, the state will change and result will be displayed.

Introduction to ASU VIPLE, Arizona State University Page | 17

Figure 2.11. ASU VIPLE program (part 2) of the garage door opener

At this time, ASU VIPLE does not have the simulated sensors and simulated drive (motors), we have to

use key press event and Print Line to simulate the sensors and motors.

Exercise 5. Parity Detection

Given a Finite State Machine (FSM) in the following diagram, implement a simulated parity detection

logic in ASU VIPLE. The program must generate a 1 output if the number of 1s entered is an even

number, otherwise, it must generate a 0 output. You can use the key press events to simulate the inputs

0s and 1s.

Figure 2.12. Finite state machine for parity detection

One of the purposes of ASU VIPLE is to extend Microsoft VPL to more conveniently support EV3 and

other physical robots. In the rest of the section, we will focus on using ASU VIPLE to connect to different

physical robots. We start with the drive-by-wire program that controls the robot using the keyboard of

the computer. Then, we will discuss the autonomous programs that control robots to navigate through

the maze without any human intervention.

oddeven
1001010110

1 00

1

“into even”

“stay odd”“stay even” “into odd”

input

output

Introduction to ASU VIPLE, Arizona State University Page | 18

Chapter 3

Controlling Simulated Robots Using ASU

VIPLE

In this section, we will write ASU VIPLE programs to control simulated robots.

3.1 VIPLE Robot Services

In this Section, we will use finite state machines to define different maze navigation algorithms and

evaluate the performance of different algorithms. You will use VIPLE’s robot services and the simulation

environment to solve the problems.

VIPLE is a programming environment with general-purpose functions, as well as IoT/Robotic specific
functions. Three sets of services are implemented: General computing services, generic robotic services,
and vendor-specific robotic services.

• General computing services: include input/output services (Simple Dialog, Print Line, Text To
Speech, and Random), Event services (Key Press Event, Key Release Event, Custom Event, and
Timer), and component services (CodeActivity, RESTful service and WSDL service), as shown in
the first part of Figure 1. CodeActivity will creased a text window that allow to use any C# code
to form an activity. WSDL service is not showing in the list. It will be created from menu
command. Most of the basic library functions supported in C# can be called in the data box of
Calculate activity. Timer service takes an integer i as input, and it will hold data flow for i
milliseconds. Timer service is frequently used in the robotic applications.

• Generic robotic services: VIPLE offers a set of standard communication interfaces, including Wi-
Fi, TCP, Bluetooth, USB, localhost, and WebSocket interfaces. The data format between VIPLE
and the IoT/Robotic devices is defined as a standard JSON (JavaScript Object Notation) object.
Any robot that can be programmed to support one of the communication types and can process
JSON object can communicate with VIPLE and be programmed in VIPLE. As shown in the second
part of Figure 1, all VIPLE services that start with Robot are generic robotic services. We will use
these services to program our simulated robots and custom-built physical robots.

• Vendor-specific services: Some robots, such as LEGO robots and iRobots, do not offer an open
communication and programming interfaces. In this case, we can offer built-in services in VIPLE
to access these robots without requiring any programming efforts on the device side. Currently,

Introduction to ASU VIPLE, Arizona State University Page | 19

the services for accessing LEGO EV3 robots are implemented, so that VIPLE can read all EV3
sensors and control EV3 drive-motors and arm-motor, as shown in the third part in Figure 1. For
those who do not want to build their own robots can simple use VIPLE and EV3 combination.

Figure 1. VIPLE general services, generic robotic services, and EV3 services

In this lab assignment, we will use generic robotic services to program simulated robots and Intel-based
physical robots. These services are explained as follows.

• Robot service is used for defining the connection types, connection port, and connection
addresses. Multiple Robot services can be used in one application to control multiple robots. For
each motor service and sensor service used, a partner Robot need to be selected.

• Robot Motor and Drive services. A number of services are defined for controlling different types
of motors defined on the devices. Which services to use are determined by the physical device
that are programmed to connect to VIPLE, and they should be specified in device hardware
manual.

o Robot Motor: It controls a single motor. It requires to set up a partner Robot, a motor

port number, and a drive power value between 0 and 1.0. The bigger the value, the
faster the motor rotates. Positive and negative values are allowed, which will cause the
motor to rotate in opposite directions.

o Robot Motor Encoder: It is the same as Robot Motor, but it is of motor encoder type.

o Robot Drive: Control two motors at the same time for driving purposes. It requires to
set up a partner Robot, two motor port numbers, and two drive power values. The
bigger the values, the faster the motors rotate. Positive and negative values are allowed.
If two identified positive values are given, the robot moves forward. If two identified
negative values are given, the robot moves backward. If one bigger value and one
smaller value, or one positive value and one negative value are given, the robot turns
left or right.

o Robot Holonomic Drive: Control four motors at the same time for holonomic driving
purposes, such as controlling a drone. It requires to set up a partner Robot, four motor
port numbers, and three drive values for X component, Y component, and rotation.

Introduction to ASU VIPLE, Arizona State University Page | 20

o Robot+ Move at Power: It requires to set up a partner Robot and a drive power value

between 0 and 1.0 to move both wheels of robot forward (positive value) or backward
(negative value). The motor port numbers are not required to specify (hard coded in the
device). This service can be used in the simulated robot.

o Robot+ Turn by Degree: It requires to set up a partner Robot and a degree value

between 0 and 360. The motor port numbers are not required to specify (hard coded
in the device). This service can be used in a robot with gyro sensor to measure the
turning degree, or in a simulated where the turning degree can be easily controlled. We
will use this service in the Web Simulator.

• Robot sensors: A number of sensor services are defined for reading data from the device,
including color sensor, distance sensor, light sensor, sound sensor, and touch sensor. Each
sensor requires to set up a partner Robot and a port number.

In this lab, you will start with implementing autonomous maze navigation algorithms in two VIPLE

simulators: (1) Unity Simulator and Web Simulator.

The Unity simulator is simple and easy to get started. It uses the Robot+ Turn by Degrees service and

two distance sensors to measure the distances in the front and at the right.

To implement Robot+ Turn by Degrees service in a physical robot, an accurate gyro sensor is required.

Normally, we can use drive power and timing to control the turning degree of a robot. Robot Drive

service is used the Web Simulator, which is the same drive service that will be used in the real Edison

robot. Thus, the code created for the Web Simulator can easily be transferred to the physical robot.

Before you start programming, please download VIPLE from: http://venus.sod.asu.edu/VIPLE/

3.2 Implementing Maze Navigation Algorithms in Robotics Simulation

Before we use VIPLE, Unity simulator and real robot to write autonomous maze navigation program, we

will use a simpler simulator to learn the maze navigation algorithms. In this section, we will use ASU

VIPLE Web 2D programming environment to program a simulated robot to navigate the maze following

the wall.

Start Web 2D Simulator. You can start it from VIPLE software or directly from this address:

http://venus.sod.asu.edu/VIPLE/Web2DSimulator/

A simulated maze is shown in the figure as follows.

There are three radio buttons at the bottom left corner of the figure, which define three different

modes.

• Choose “Move Robot”: you can use the four arrow keys on your keyboard to drive the robot.

• Choose “Erase Wall”: you can use the four arrow keys to move the erase point and erase the

existing wall of the maze.

Introduction to ASU VIPLE, Arizona State University Page | 21

• To erase a piece of wall, you first choose “Erase Wall” and use the arrow keys to move the

“square” to the point where you want to draw new wall. Then you choose “Draw Wall”, and you

can use the four arrow keys to draw new wall for the maze.

In this exercise, you will draw a new maze, as shown below, and drive the robot to the end point. How
much time you use to drive the robot to end point?

Exercise 9: Learn the wall following algorithms

(1) Open the Web simulator at: http://venus.sod.asu.edu/VIPLE/Web2DSimulator/

(2) Click the button “Right Wall Follow”. Observe the move of the robot and try to understand the
rules that control the robot to move. The rules are:

a. Robot moves forward;

b. If right side is open, turn right, else

ASU IOT Maze Simulator

Arrow Key Mode

endpoint

Introduction to ASU VIPLE, Arizona State University Page | 22

c. If front has no way to go further, turn left.

(3) Click “Reset Simulator” button and set the robot to the starting position.
Click the button “Left Wall Follow”. Observe the move of the robot and try to understand the
rules that control the robot to move.

a. Robot moves forward;

b. If left side is open, turn left, else

c. If front has no way to go further, turn right.

Exercise 10: Program a Web robot to follow the Right-Side-Wall

Base on the study in the previous exercise, you can use the Web programming tool in the Web simulator
to write the following program:

Reset the Simulator and run the program. What happens?

The robot turns left and then left, and keeps it in a circle. Why does it happen? It is because the robot
will see that the left side is open again after turn left.

To solve this problem, you can use “Delayed Turn Left” instead.

This code means that the robot will move 50 points forward after turned left. Reset the Simulator and
run the code again. What does it happen? If the robot still turns in circle, you need to use a larger delay
value, e.g., 100.

Exercise 11: Traversing the maze using two-distance-local-best algorithm

In addition to the wall following algorithms, other algorithms can be developed. For example, a two-
distance local best algorithm can be described as follows.

Introduction to ASU VIPLE, Arizona State University Page | 23

Implement this algorithm in the Web 2D simulator.

Test you program and make sure it works as expected. When you are done, please notify your lab

instructor and demonstrate your program for sign-off.

3.3 Maze Navigation Algorithms Using Finite State Machine

Exercise 1: Understanding the VIPLE Diagram

Read the VIPLE diagram given in Figure 7 and answer the following questions.

Figure 7. Main diagram of a maze navigation algorithm

1. What algorithm does this VIPLE diagram implement?
2. What states does this diagram use?

Hint, there two types of variables: (1) variables with a fixed (finite) number of possible values

and (2) variables with unlimited number of values, such as integer or double. The finite state

machine uses those variable’s values as states that have fixed (finite) numbers of possible values.

3. Draw the finite state machine of this diagram.

Introduction to ASU VIPLE, Arizona State University Page | 24

Hint: You first decide the states based on the values of the variable isBusy. Then, you add

transitions and the input and output related to each transition to form the finite state machine.

4. What values should be given to the Robot Move and Robot Turn services in order to complete
the algorithm?

When you are done, please notify your lab instructor and demonstrate your program for sign-off. Then

change the driver to proceed to the next assignment.

Exercise 2: Implement the VIPLE Diagram

We start to use the Unity simulator.

Enter the Diagram into VIPLE. Make sure you configure the Robot, sensor, and motor services with the

following values.

Right click the robot to use the following configurations: (1) In Set TCP Port: set port number to 1350; In

Properties: choose localhost; and in Connection Type: choose Wi-Fi.

Right click each Move service and choose “My Robot 0” as the partner.

Right click each Distance Sensor service, choose “My Robot 0” as the partner. Set Port to 1 for right

sensor and set to 2 for the front sensor.

Start the Simulator and run the diagram. Adjust the values given to the Robot Move and Robot Turn

services to make the program work.

Follow Figure 6 to change the maze and test the effectiveness of the algorithm.

When you are done, please notify your lab instructor and demonstrate your program for sign-off. Then

change the driver to proceed to the next assignment.

Exercise 3: The Activities of the Two-Distance-Local-Best Algorithm

In this exercise, you will implement the two-distance-local-best algorithm. Its finite state machine is

shown in Figure 4.

Introduction to ASU VIPLE, Arizona State University Page | 25

You will use modularized code to implement the algorithm. First, you create the activities needed, as

shown in Figure 8.

Figure 8. Activities needed in the Main diagram

The codes for the activities are given in Figure 9. The codes for turning Left180 and for Right180 are the

same, except the turning degree is set to -180.0 and 180.0, respectively. The timer is used for delay the

next operation for stability.

Figure 9. The code of the activities

DistanceMeasured

< 400
Turned

Right

Turned

Left

rightFinished

Resume

180 DistanceMeasured

< rightDistance

Turning

Right

Turning

Left

leftFinished

DistanceMeasured

>= rightDistance

Resum180

Finished

Start

RightDistance DistanceMeasured

Forward

Introduction to ASU VIPLE, Arizona State University Page | 26

Right click the Robot service to use the following configurations: (1) In Set TCP Port: set port number to

1350; In Properties: choose localhost; and in Connection Type: choose Wi-Fi.

Right click each Move and Sensor service and choose “My Robot 0” as the partner.

When you are done, please notify your lab instructor and demonstrate your program for sign-off. Then

change the driver to proceed to the next assignment.

Exercise 4: The Main Diagram of the Two-Distance-Local-Best Algorithm

Following the finite state machine, the first part of the Main diagram is given in Figure 10.

Figure 10. The first part of the Main diagram

The second part that is connected to the first part is given in Figure 11.

Introduction to ASU VIPLE, Arizona State University Page | 27

Figure 11. The second part of the Main diagram

Start the Simulator and run the diagram.

Follow Figure 6 to change the maze and test the effectiveness of the algorithm. Is this algorithm more

efficient than the wall-following algorithm?

When you are done, please notify your lab instructor and demonstrate your program for sign-off. Then

change the driver to proceed to the next assignment.

Exercise 5: Web Simulator

The Web Simulator implemented in VIPLE uses a different set of drive services. These services are the

same as the services to be used in the physical robot, and thus, the programs written in the Web

Simulator can be easily applied to the physical robot. The changes need to be made is the parameter

values controlling the turning times.

The Web simulator can be downloaded from VIPLE site or directly started from:

http://venus.sod.asu.edu/VIPLE/WebSimulator/

Introduction to ASU VIPLE, Arizona State University Page | 28

You can also start the Web 2D Simulator from VIPLE, as shown in the left part and the maze opened in

the browser is shown on the right side of Figure 12.

The simulator is equipped with two ultrasonic distance sensors and one touch sensor, and you can use

choose to have the sensor in the front, left, right or back of the robot, as shown in Figure 13. The port

numbers of the sensor is defined in your VIPLE code. You can choose any number as the port number. If

you use one sensor only, you must set the port number of the second senor to none. Click Add/Update

Sensors after you have defined your sensors.

Note, due a security block in IE browser, the Web Simulator may not be able to communicate with VIPLE.

Use Chrome or Firefox if they are available on your computer or phone.

Figure 12. Maze of the Web Simulator

Please read the instruction on the simulator page on the configuration requirements to connect VIPLE

program. If you set Touch Sensor in the front to be 0 and the ultrasonic sensor on the right to 2, then,

you must choose the same port numbers in your VIPLE program.

Figure 13. Sensor setting of the Web 2D simulator

Introduction to ASU VIPLE, Arizona State University Page | 29

When you are done, please notify your lab instructor and demonstrate your program for sign-off. Then

change the driver to proceed to the next assignment.

Exercise 6: Configuring VIPLE to Use Web 2D Simulator

Now, you can go back to VIPLE. You can use the same drive-by-wire code that you used with Unity

Simulator. However the configuration will be different.

Step 1: Right click My Robot to use the following configurations (1) In Change Connection Type: choose

WebSocket Server. (2) In Change TCP Port: set port number to 8124, as shown in Figure 14.

Figure 14. Configuration of the Robot service for simulation

For the Drive service, you will set the port numbers to 3 and 5 for the Left Wheel and Right Wheel,

respectively, as shown in Figure 14.

Step 2: Use the drive-by-wire code that you used with Unity Simulator. After you start “Run: the VIPLE

code, you need to go back to the Web browser and click “Connect to ASU VIPLE (WebSockets), as shown

in the left part of Figure 15. This operation will connect your Web Simulator to VIPLE.

Step 3: Go back to your VIPLE code, click the console window (Run window), as shown in the right part

of Figure 15. Only if the Run window is in the front, can the Key Press take effect. Now, you can use the

keys to control the robot to move. The keys are programmed in your VIPLE code using Key Press events.

Introduction to ASU VIPLE, Arizona State University Page | 30

Figure 15. Connect the Web Simulator with VIPLE program and Run window

When you are done, please notify your lab instructor and demonstrate your program for sign-off. Then

change the driver to proceed to the next assignment.

You can watch the video for setting up and connect Web2D to VIPLE at: https://youtu.be/XgrFvECjjSY

Exercise 7: Implement Wall-Following Algorithm in Web Simulator: Main Diagram

We first implement the right-wall-following algorithm. The Main diagram is given in Figure 16. For My

Robot 0, the connection type must be WebSocket Server and the TCP Port is 8124, as shown in Figure 14.

Two sensors are used in the program. A distance sensor is used on the right hand side to measure the

distance to the wall. A touch sensor is used in the front to detect the wall. The sensors must configured

as follows:

• Right click Robot Distance Sensor and set Partner to My Robot 0 and Port number to 1.

• Right click Robot Touch Sensor and set Partner to My Robot 0 and Port number to 2.

Figure 16. Main diagram implementing the right-wall-following algorithm

When you are done, please notify your lab instructor and demonstrate your program for sign-off. Then

change the driver to proceed to the next assignment.

https://youtu.be/XgrFvECjjSY

Introduction to ASU VIPLE, Arizona State University Page | 31

Exercise 8: Implement Wall-Following Algorithm in Web Simulator: Activities

Now, we need to implement the Activity diagrams to be called in the Main diagram.

Step 1: Figure 19 shows the code for Init activity, which initializes the two variables and set the robot

moves forward. There is no output from this activity.

Figure 17. The Init Activity

Step 2: Figure 18 shows the implementation of the Right90 activity. Right click the motor and select the

data connection. The data connection values for the two drive services are shown in lower part of the

figure. The first set of values cause the robot to turn right and the second set of values cause the robot

to stop.

Figure 18. Right90 Activity and Data Connection

Step 3: You can follow the code for Right90 to implement Left90 by reversing the power on the wheels.

Step 4: Figure 19 shows the implementation of the Backward and Forward activities. For the Backward

activity, the drive power can be set to -0.3 for both wheels. For the Forward activity, the drive power

can be set to 0.5 for both wheels.

Introduction to ASU VIPLE, Arizona State University Page | 32

Figure 19. Backward and Forward Activities

Step 5: Figure 20 shows the code of for ResetState.

Figure 20. ResetState Activity

Step 6: Now you can the wall-following algorithm in Web Simulator. Use the following steps to test the

program.

1. Start the Web Simulator

2. Start to run VIPLE program.

3. Step: Set up the sensor values in the Web Simulation.

4. Click “Add/Update Sensors”

5. Click Connect to ASU VIPLE (WebScokets).

If you use a Key Press event to star the move, you need to click the VIPLE’s Run window and use the key

to star the move.

When you are done, please notify your lab instructor and demonstrate your program for sign-off. Then

change the driver to proceed to the next assignment.

Exercise 9: Implement Two-Distance-Local-Best Algorithm in Web Simulator: Main

The Two-Distance-Local-Best Algorithm uses one distance sensor in the front of the robot, and thus, it

need to turn the body of the robot to measure the distance on the right and then on the left.

The main diagram will be similar to the code for the Unity Simulator. The differences are in the

parameter values. Figure 21 shows the first part and Figure 22 shows the second part of the Main

diagram.

Introduction to ASU VIPLE, Arizona State University Page | 33

Figure 21. The first part of the Main diagram

Introduction to ASU VIPLE, Arizona State University Page | 34

Figure 22. The second part of the Main diagram

When you are done, please notify your lab instructor and demonstrate your program for sign-off. Then

change the driver to proceed to the next assignment.

Exercise 10: Implement Two-Distance-Local-Best Algorithm: Activities

You can write the code of the activities in the same way as the code for the wall-following program. For

the Init activity, you do not have the baseDistance variable to initialize. For the Left180 activity, you can

start from Left90, and use longer time to make 180 degree.

Right Click the Robot Distance Sensor to set the Port to 3, and configure the Web Simulator in the Web

browser accordingly. Since this program uses one sensor only. Set the second sensor to none.

Introduction to ASU VIPLE, Arizona State University Page | 35

Follow the same process to test the code, as you did in testing the wall-following algorithm.

When you are done, please notify your lab instructor and demonstrate your program for sign-off.

Introduction to ASU VIPLE, Arizona State University Page | 36

Chapter 4

Programming Intel Robots Using ASU

VIPLE

In this section, we will write ASU VIPLE programs to control self-built open architecture robots. We have

built a robot using Intel Edison board with Linux operating system.

4.1 Constructing and configuring your robot

Exercise 1. Build Your Robot

This exercise depends on what have been preinstalled. The followings show the steps needed if nothing

is preinstalled.

To assemble an Intel Edison robot, you can start with the instructions to install software on an Edison

processor with an Arduino breakout board:

https://software.intel.com/en-us/assembling-intel-edison-board-with-arduino-expansion-board

For constructing the robot part, you can follow the instructions given by your instructor. The following

links shows two of the Edison robots built at ASU

• Sample robot in ASU VIPLE site:

 http://venus.sod.asu.edu/VIPLE/

The software installed on the Edison robot is listed as follows:

https://software.intel.com/en-us/assembling-intel-edison-board-with-arduino-expansion-board
http://venus.eas.asu.edu/WSRepository/VIPLE/

Introduction to ASU VIPLE, Arizona State University Page | 37

where, the file run.sh is the script to start the program on the robot. We need to start this file before

ASU VIPLE can communicate the robot. The file main.js is a JavaScript program that performs most of

the work on the robot. It establishes the connection with the Wi-Fi router, displays the IP address on the

screen, and waits for the host computer to connect. Notice that the Edison robot and the host computer

must connect to the same router. The main.js program also interprets the JSON packets from the host

computer and sends the commands to the motors. The folder node_modules contains the library

functions that support the scripts in main.js. The folder ArduinoFiles contains the code that read the

sonic sensor to obtain the distance value measured by the sensor.

ASU VIPLE supports an open interface to other robot platforms. Any robot that follows the same

interface and can interpret the commands from ASU VIPLE program can work with ASU VIPLE. ASU VIPLE

program communicates with the robot using the following JSON object, which defines the input to the

robot from the ASU VIPLE program and the output from the robot to the ASU VIPLE program.

The ASU VIPLE environment will encode the control information into this object. The robot needs to

interpret the script and perform the actions defined. On the other hand, the robot will encode the

feedback in the same JSON format, send that back to the ASU VIPLE program, and the ASU VIPLE

program will extract and use the information to generate the next actions.

Sponsored by the Intel IOT Group, a number of robots based on Intel architecture, including Intel’s

Galileo, Bay-Trail, and Edison, have been developed. ASU VIPLE can connect to these robots via Wi-Fi or

Bluetooth, send commands to them, and control them to perform different tasks.

ASU VIPLE implemented two types of robots: EV3 robots and generic robots. A generic robot is a robot

that can communicate with the computer running ASU VIPLE and can process the JSON packet.

Introduction to ASU VIPLE, Arizona State University Page | 38

Exercise 2. Starting the Program on Edison Robot

This exercise assumes that no starting script is given and manual steps are required. Then, the followings

are the steps need to be done before your ASU VIPLE program can control the Edison robot.

1. Installed Edison driver program on the computer that will communicate with the Edison board.

2. Turn on the Edison board power and motor power.

3. Wait for the robot to connect to the default router and to display the IP address.

4. Start SSH from the host computer to log into the Edison using the displayed IP address.

5. Enter the Edison’s user name, e.g., root

6. Enter the Edison’s Password, e.g., password

7. Use SSH shell command to start the program by executing ./run.sh

If the IP address does not appear on the screen of the robot, you can perform the following steps to find

the IP address of the robot.

1. Connect robot to the host computer using a USB cable;

2. Start SSH from the computer to log onto the Edison using this IP Address: 192.168.2.15

- This can only be done from a computer that has been set up according to these instructions:

https://software.intel.com/en-us/connecting-to-intel-edison-board-using-ethernet-over-usb

3. User name, e.g.: root

4. Password, e.g.: password

5. Find your IP Address using ifconfig command OR force it to display on the screen by running this

command: python ip.py

6. If you need to connect to a new network, you can configure the WiFi on the Edison using this

command: configure_edison --wifi

- Full instructions for doing so are here: https://software.intel.com/en-us/connecting-your-intel-

edison-board-using-wifi

Additional note:

- Each time you want to connect to the Edison from ASU VIPLE you need to re-run the script (./run.sh).

Each script run only accepts one connection, after which it won't be able to accept another connection.

Exercise 3. Pairing Edison Robot with the host computer

To connect a robot to ASU VIPLE program, the computer running the ASU VIPLE program needs to pair

with the robot.

As long as a robot can (1) establish a Wi-Fi or Ethernet connection with the computer running the ASU

VIPLE program, (2) encode the information into the JSON object, and (3) interpret the command from

the ASU VIPLE program, the robot can be run from the ASU VIPLE program.

Now, we can start the exercises with ASU VIPLE and Edison robot.

https://software.intel.com/en-us/connecting-to-intel-edison-board-using-ethernet-over-usb
https://software.intel.com/en-us/connecting-your-intel-edison-board-using-wifi
https://software.intel.com/en-us/connecting-your-intel-edison-board-using-wifi

Introduction to ASU VIPLE, Arizona State University Page | 39

4.2 Sensor testing and remote controlling

Exercises 1. Sensor testing and configuration

Before we program the sensors into our application, we test all physical sensors and make sure they

work as expected. Figure 4.1 shows the connections of sensor to the output services. We will test the

motors in the next exercise.

Figure 4.1. Testing sensors

In order for the main robot, the sensors, and the motors to communicate with the ASU VIPLE properly,

we need to configure the partnership between the main robot and its devices, the IP address, and ports.

Figure 4.2 shows the configuration of the three devices: main robot, drive (motors) and the distance

sensor. Notice that the numbers may differ from different robot configuration. Consulate your instructor

for the numbers.

Introduction to ASU VIPLE, Arizona State University Page | 40

Figure 4.2. Configuration of My Robot and Robot Drive service

Exercise 2. Drive-Edison Robot-by-wire in ASU VIPLE

Figure 3-3 shows the program that remotely controls an Edison robot using the four arrow keys on the

computer’s keyboard. The Key Press Events are services that offer the same functionality as that of the

Direction Dialog in Microsoft VPL. As we can define the key individually and we can define more than

four keys, using Key Press Events is more flexible than using Direction Dialog.

Quiz 1: How do you make the robot to turn left? How do you make the robot to turn right?

Quiz 2: What could be a problem in driving the robot using this program?

Introduction to ASU VIPLE, Arizona State University Page | 41

Figure 4.3. Drive an Edison robot by wire

Exercise 3. Improving the driving experience

It is hard to control the robot using the program in the previous exercise. The main problem is that the

robot does not stop or slow down when the key is released. We can improve it by removing the drive

power when the key is released, as shown in Figure 4.4.

Introduction to ASU VIPLE, Arizona State University Page | 42

Figure 4.4. Improved driving experience

Quiz: What change is made and why do we make this change?

4.3 Maze navigation using wall-following algorithm

Exercise 1. Robot Wall-following maze navigation (main diagram part 1)

Now, we will start to write more complex program so that the robot can move autonomously and react

to the obstacles in a maze. We use the right-wall-following algorithm and define the algorithm using the

finite state machine in Figure 4.5.

Figure 4.5. Finite state machine describing the right-wall-following algorithm

ForwardRightDistance

< BaseDistance - 5

Left 1

degree

Start

RightDistance

> BaseDistance + 5

Turning

Right90

RightDistance > BaseDistance + 400

Turned

Right

rightFinished
Turning

Left90

Turned

Left

leftFinished

FrontSensorDistance < 200

Right 1

degree

Introduction to ASU VIPLE, Arizona State University Page | 43

Two variables are used. An integer type variable BaseDistance stores the desired distance to the wall,

which is initialized to 50 millimeter or the initial measurement of the range sensor. A string variable

Status is used to store the moving status of the robot, and it is initialized to “Forward.” The Status

variable can take one of these values: “Forward,” TurningLeft,” “TurnedLeft,” “TurningRight,” and

“TurnedRight.” We do not need a status value for turning “Left 1 degree” or “Right 1 degree,” as these

two actions can be done instantly, and other actions do not need to coordinate with these two status.

The execution process can be described in the following algorithm.

1. Variable BaseDistance = 400 (or initially measured distance);

2. The robot repeats all the following steps in a loop, until the touch-sensor-pressed event occurs;
1) Status = “Forward”; Robot moves forward;
2) Robot keeps measures the right side-distance in certain interval defined by polling frequency,

and it compares the newly measured distance with the distance stored in variable
BaseDistance;

3) If the distance measured is less than BaseDistance - 5, the robot turns one degree left, and
then returns to step 2;

4) If the distance measured is greater than BaseDistance + 5, turns one degree right, and then
returns to step 2;

5) If the distance measured greater than BaseDistance + 200, Status = “TurningRight90”; start
to turn 90 degree right; after turning, Status = “TurnedRight”; and then returns to step 2;

3. Touch sensor is pressed; robot moves backward 0.5 rotations, Status = “TurningLeft90”; start to
turn 90 degree left; after turning, Status = “TurnedLeft”; and then returns to step 2;

Following the finite state machine, we now can write the code for a robot to autonomously navigate

through a maze. Figure 4.6 shows the first part of the main diagram that implements the finite state

machine.

Introduction to ASU VIPLE, Arizona State University Page | 44

Figure 4.6. The main diagram (part 1) of the right wall-following program

This part of the diagram implements these states in the finite state machine: Forward, Left1 degree,

Right1 degree, Turning right, Turned Right90. A main brick, an ultrasonic sensor (distance sensor), and a

drive service are used in this part of the program.

Exercise 2. Robot Wall-following maze navigation (main diagram part 2)

Figure 4.7 shows the second part of the main diagram that implements the state Turning Left90 and

TurnedLeft states after the touch sensor hits the front wall. In this implementation, we use another

distance sensor. When the measured distance is less than 30, the robot considers that the there is no

room to move forward further, and thus, it turns left 90 degree. If a touch sensor is used, the test

condition will be “value == 1”, instead of “value < 30”. If a touch sensor is used, the robot will need to

revise a bit, to make room for left turning.

Introduction to ASU VIPLE, Arizona State University Page | 45

Figure 4.7. The main diagram (part 2) of the right wall-following program

This two parts of the diagrams complete the main program. In the following exercises, we will complete

the activities that implement the components.

Exercise 3. Write the Init Activity

As shown in Figure 4.8, the Init activity will initialize the two variables and set the robot moves forward.

There is no output from this activity.

Figure 4.8. The Init Activity

Exercise 4. Left1 and Right1 Activities

Figure 4.9 shows the implementation of the Left1 activity. Right click the motor and select the data

connection. The data connection values for the two drive services are shown in lower part of the figure.

The first set of values cause the robot to turn left and the second set of values cause the robot to stop.

Introduction to ASU VIPLE, Arizona State University Page | 46

Figure 4.9. The Left1 Activity and Data Connection

You can follow the code of Left1 to implement Right1.

Exercise 5. Right90 and Left90 Activities

Figure 4.10 shows the implementation of the Right90 activity. Right click the motor and select the data

connection. The data connection values for the two drive services are shown in lower part of the figure.

The first set of values cause the robot to turn right and the second set of values cause the robot to stop.

Figure 4.10. Right90 Activity and Data Connection

You can follow the code of Right90 to implement Left90.

Exercise 6. Backward and Forward Activities

Figure 4.11 shows the implementation of the Backward and Forward activities. For the Backward activity,

the drive power can be set to -0.3 for both wheels. For the Forward activity, the drive power can be set

to 0.3 for both wheels.

Figure 4.11. Backward and Forward Activities

Introduction to ASU VIPLE, Arizona State University Page | 47

Exercise 7. ResetState Activity

Figure 4.12 shows the code of the ResetState.

Figure 4.12. ResetState Activity

In the next set of exercises, we will use a different algorithm, the two-distance algorithm, to implement

the maze navigation.

4.4 Maze navigation using local best heuristic algorithm

Exercise 1. Solving the Maze Using the Two-Distance Algorithm

In this section, we will use ASU VIPLE to implement the heuristic (local best) algorithm using an Edison-

based robot. As ASU VIPLE is an event-driven language, it is the best way to specify the algorithm in a

finite state machine, as shown in Figure 4.13. In the diagram, we use two variables. The variable “Status”

can take six possible string-type values: Forward, TurningRight, TurnedRight, TurningLeft (Spin180),

TurnedLeft, and Resume180. The int-type variable “RightDistance” is used to store the distance to the

obstacle after the robot turned right.

Figure 4.13. State Diagram of a maze navigation algorithm

The finite state machines implements a heuristic algorithm that can be elaborated in the following steps.

DistanceMeasured

< 400
Turned

Right

Turned

Left

rightFinished

Resume

180 DistanceMeasured

< rightDistance

Turning

Right

Turning

Left

leftFinished

DistanceMeasured

>= rightDistance

Resum180

Finished

Start

RightDistance DistanceMeasured

Forward

Introduction to ASU VIPLE, Arizona State University Page | 48

1. The robot starts to move forward;
2. If the distance measured by the range sensor is less than 400 millimeter, it turns (90 degree)

right;
3. After the event “rightFinished” occurs, it saves the distance measured to the variable

RigthDistance;
4. The robot then spins 180 degree left to measure the distance on the other side;
5. After the event “leftFinished” occurs, it compares the distance measured to the values saved in

the variable RigthDistance;
6. If the current distance is longer, it transits to the state “Forward” to move forward;
7. Otherwise, it resumes (spins 180 degree) to the other direction;
8. Then, it transits to the state “Forward” to move forward.

The algorithm is said to be heuristic, because it cannot find a solution in all cases of mazes. However, it

has a good chance to find a solution in most mazes, given the information available collected by a single

range sensor. For the given maze in Figure 9.36; for example, the algorithm will navigate the finish line

without a problem.

Figure 4.14 shows the first part of the main diagram of ASU VIPLE code.

Figure 4.14. The first part of the main diagram implementing the two-distance maze algorithm

The algorithm starts with the robot moving forward. When it approaches a wall in the front, it measures

the distance to the right and saves the distance into a variable. Then, the robot spin 180 degree to

measure the other side’s distance. It compares the two distances and move to the direction with more

space. In this part of the diagram, an If activity is used to compare the current status and the distance

value from the sensor, which generates four different cases.

Introduction to ASU VIPLE, Arizona State University Page | 49

Exercise 2. Controlling Intel Edison Robot in ASU VIPLE

The second part of the main diagram is shown in Figure 4.15, which processes four cases of the If-

activity, respectively. The Print Line activity is used for debugging purpose. Please read the program

follow the finite state machine.

Figure 4.15. Processing the four cases

Exercises 3. Implementing the Activities Used in the ASU VIPLE Program

There are six activities are implemented to support the main diagram: Init, Forward, Right90, Stop,

Left180, and Right180. Consider each as an exercise.

Figure 4.16 shows the codes of four of these activities: Init, Forward, Right90, and Stop. The codes of the

Right180 and Left180 are similar to Right90, but with different values. Right click the Robot Drive

services in each activity to enter their values as follows:

• In Forward: Set the Robot Drive values to 0.4 for both wheels.

• In Right90: Set the first Robot Drive values to 0.4 and -0.4 for left and right wheels, respectively.

Set the second Robot Drive value to 0.0 for both wheels to make sure the robot make a full stop

before taking the next action.

• In Right180: The code is the same as Right90, but set the first Timer value to 1900, instead of

950.

• In Left180: The code is the same as Right180, but set the first Robot Drive values to -0.4 and 0.4

for left and right wheels, instead.

Introduction to ASU VIPLE, Arizona State University Page | 50

• In Stop: Set the Robot Drive value to 0.0 for both wheels.

These values are reference vales. You need to adjust the values when you test your robot to make the

correct timing and correct degree of turning.

Figure 4.16. Codes for Init, Forward, Right90, and Stop

The video of the robot’s navigating the maze and other resources can be found in the ASU VIPLE site:

http://venus.sod.asu.edu/VIPLE/

The full code of maze navigation program of the robot’s navigating the maze is available for instructors.

Exercises 4. Using a simplified finite state machine

In the aforementioned implementation, the robot compare the left distance and right distance to make

the decision. You can simply the decision making process in certain maze to use one distance value only.

If the measured distance is greater than a certain value, the robot simply move to the current direction.

Otherwise, spin 180 degree and move to the opposite direction without further measuring the distance.

Figure 4.17 show the simplified finite state machine.

Forward

Stop

Init

Right90

Introduction to ASU VIPLE, Arizona State University Page | 51

Figure 4.17. Simplified finite state machine using one distance value

Implement the finite state machine for better performance.

4.5 Implementing maze navigation using event-driven programming

Thus far, our algorithms have been implemented mainly using sequential programming, except the

predefined key press events and robot sensor events. Defining our own set of events provides several

advantages, including clearer code and better support parallel processing. In addition, using events

allows us to more closely represent the original finite state machine. Some of the transitions in the finite

state machine are actually events, rather than user input. In this section, we will redesign the foregoing

wall-following program using event-driven programming. The finite state machine for the program is

shown in Figure 4.5.

Exercise 1. Redesign Left90 activity using event-driven programming style

We start with turning “Left90” activity. We are supposed to move to “Turned Left 90” and “Forward”

after the “leftFinished” event triggers. Figure 4.18 demonstrates the changes required to define this

event. Inside the “Left90” activity, we will draw a line to the circle output port instead of the triangle

output port. The circle represents an event and declares that we want to trigger an event when we are

done turning left 90. Since we are not drawing a line to the triangle, the activity block will never output a

value to an activity connected sequentially after the “Left90” activity.

Figure 4.18. Adding an event trigger in the “Left90” activity

DistanceMeasured < 400 Turning

Left

Turned

Left

leftFinished

Spin

180
DistanceMeasured < 800

DistanceMeasured >= 800
Spin180

Finished

Start

Forward

Introduction to ASU VIPLE, Arizona State University Page | 52

Exercise 2. Redesign Left1 and Right90 using event-driven programming style

Figure 4.19 shows the redesigned “Left1” and “Backward” activities.

Figure 4.19. Adding an event trigger in the “Left1” and “Backward” activities

Exercise 3. Redesign the other activities using event-driven programming style

Make similar changes in the “Right90” and “Right1” activities.

Exercise 4. The Main diagram based on the event-driven activities

Now that we have defined our events in the activities, we need to update the Main diagram to handle

the events. An event handler is a piece of code which is executed whenever a certain event occurs. We

can define a custom event handler for our events using the “Custom Event” activity. By selecting one of

our activity blocks in the drop down menu, we can handle any events triggered by that activity block.

For example, if we select “Left90” in the “Custom Event” activity’s drop down box, the code following

that “Custom Event” activity will execute immediately after the code shown in Figure 4.8 reaches the

circle pin. Figure 4.20 shows the updated program which uses events to transition between states

instead of sequential programming. We also used a “Merge” activity to avoid repeating the “ResetState”

activity.

Introduction to ASU VIPLE, Arizona State University Page | 53

Figure 4.20. The right wall-following algorithm with custom events

4.6 Implementing sumo robot

Before you program your sumo-robot, you need to install a light sensor in the front part of you robot

and face to the floor. In order to read the black ring outside the sumo-ring, the light sensor must be so

close to the floor, that you cannot insert more than two coins below the color sensor.

Exercise 1. Basic sumo-robot program

The light Sensor measures the light intensity, which enables your robot to distinguish between light and

dark and different colors. The code below shows that simple code that can detect the black ring of the

white sumo board.

Introduction to ASU VIPLE, Arizona State University Page | 54

Figure 4.21. Basic program for sumo robot

The basic sumo robot algorithm using a single sensor (light sensor) can be described as follows.

Sumo Algorithm 1: Basic Sumo with Light Sensor, with the Light Sensor Installed Faced to Floor

1. The robot moves forward;
2. If the light sensor detect a color change (an event that the robot runs into the edge ring), the

robot stops;
3. It moves backward for certain distance;
4. It turns a random number of degrees; // Note, you can use the Random in the service list.
5. It returns (loops) to step 1.

Exercise 2. Advanced sumo-robot program

To improve the performance of the sumo robot, you can use a touch sensor in addition to the light

sensor. When the touch sensor is pressed, your sumo robot should move against that direction. You can

also use an ultrasonic sensor to detect the opponent and turn the direction where the ultrasonic sensor

detects a distance change.

For more detail of the advanced sumo-robot algorithms, please read the sumo-robot section in EV3

robot, where two additional algorithms are given.

Introduction to ASU VIPLE, Arizona State University Page | 55

Chapter 5

Controlling EV3 Robots Using ASU VIPLE

In this chapter, we start to use ASU VIPLE to write programs to control EV3 robots. Before we start to

program, we need to build the robot. You can build your robot use the book in the EV3 box, or follow

the link: http://robots2doss.org/?p=133

5.1 Working with EV3 robots

Exercise 1. Finding sensor reading from EV3 Brick

Before we program the sensors into our application, we should test all physical sensors and make sure

they work as expected.

For color sensor and the ultrasonic sensor, sensor reading values (light reflection from the floor and the

distance to the obstacle) can be found from EV3 brick. You can use the EV3 button and screen to do the

calibration. As shown in Figure 5.1, first, have the color sensor face the floor, use the left-button to

select the third tag, and then, select “Port View”. It will show the sensor reading value. Then, move the

color sensor head to the black line, and repeat the process to read reflection value. Move to the next

port, you will see the ultrasonic sensor reading value.

Figure 5.1. View sensor reading values from EV3 Brick screen

http://robots2doss.org/?p=133

Introduction to ASU VIPLE, Arizona State University Page | 56

Exercise 2. Finding sensor reading by a program

You can write an ASU VIPLE program to find the sensory value. Figure 5.2 shows the code for EV3

sensors. A similar program can be written for Edison robots. We will test the motors in the next exercise.

Figure 5.2. View sensor reading values using s program

For EV3 or Edison robot, adding more sensors into the program and test them.

Exercise 3. Connecting robot to Computer via Bluetooth or Wi-Fi

To make the diagram in Figure 5.2 work with a physical robot, we need to configure the devices used in

the diagram in a number of steps.

Step 1: Configure the EV3 brick. Similar to the Microsoft VPL code, we use a main brick, called My EV3

Brick, to define the major configuration. It is possible to add more than one brick into a diagram. Right-

click the brick to open the configuration. Figure 5.3 shows the right-click window and the two

configuration windows. Change Connection Type window allows us to choose one of three available

connection methods: Wi-Fi, Bluetooth, and USB. If Bluetooth is selected, the standard Bluetooth pairing

process can be used to establish the connection between the computer running the ASU VIPLE program

and the robot.

Introduction to ASU VIPLE, Arizona State University Page | 57

Figure 5.3. Configuration of the EV3 brick using Bluetooth connection

Step 2: Configure the other devices. For each device, we need to choose the partner and choose the

connection ports that the devices use. There is one device used in this diagram: the Drive service. Figure

5.4 shows the right-click window to the EV3 Drive service. The configuration sets the Drive service to

partner with My EV3 Brick 0, and we assume that the Drive wheels are connected to the motor ports B

and C on the EV3 Brick 0, respectively.

Figure 5.4 Configuration of the EV3 brick

Step 3: Establish the connection. We assume that Bluetooth connection is selected. Bluetooth

connection process depends on the Bluetooth device installed on your computer. A typical process

consists of the following steps:

(1) Open the Bluetooth panel from the computer’s Task Bar, and choose Add a Device.
(2) The Bluetooth panel will show the devices that are ready to add. Find the EV3 robot that you

want to add. Note, you can see the robot name on your EV3. You can also change name to make
it unique.

(3) Once the add request is issued from the computer, the EV3 side will pop up a confirmation check
box. Confirm it. EV3 will further generate a pass code 1234. Confirm the code again.

(4) On the computer side, a textbox will then pop up. Enter the pass code 1234 to connect.
(5) After the connection, we still need to know the “Outgoing” COM port of the connection. This port

needs to be entered into the Property window in My EV3 Brick 0, as shown in Figure 6. To find
the COM port, open the Bluetooth panel from the Task Bar and choose Open Bluetooth Settings.
We will see the COM Ports, as shown in Figure 5.5.

Introduction to ASU VIPLE, Arizona State University Page | 58

Figure 5.5. Find the COM port for My EV3 Brick 0 configuration

Once the configuration is completed, we can start to run the program and use the keyboard to drive the

robot forward, backward, left, right, and stop.

We do not use Wi-Fi here. However, if Wi-Fi is selected for connection, as shown in Figure 5.6, we need

to find the IP address of the robot and enter it into the Properties window so that the ASU VIPLE

program can establish the Wi-Fi connection to the robot. Using the buttons and the screen on EV3, you

can choose the Wi-Fi network to connect to and find the IP address after the connection.

Figure 5.6. Configuration of the robot using Wi-Fi connection

Exercise 4. Make your robot move

Once the robot is built and connected to the computer, you are ready to write a program to make the

robot to move forward, backward, turn left, and turn right. Assume that you want to complete the

mission by driving from point X to point Y, but you need to avoid the obstacle on its way, as shown in

Figure 5.7.

Figure 5.7 A mission to move around an obstacle

X
Y

Introduction to ASU VIPLE, Arizona State University Page | 59

This mission can be completed by a sequence of movements: forward, left, forward, right, forward, right,

and forward. The VIPLE implementing the mission is given in Figure 5.8. When moving forward, we

assign positive values to both wheels. When turning, we assign a positive value to one wheel and

negative value to the other wheel. How do we make the robot move backward?

Figure 5.8 VIPLE code to move around an obstacle

In the code above, we use “Lego EV3 Drive for Time” service. The service takes an integer value and

moves the robot for the given amount of time. This service is equivalent to “Lego EV3 Drive” service + a

“Timer” service, as shown in Figure 5.9.

Figure 5.9 Two ways of defining a movement

5.2 Remote control of EV3 robots

Exercise 1. Drive-EV3-by-wire in ASU VIPLE

Figure 5.7 shows the program that remotely controls an EV3 robot using the four arrow keys on the

computer’s keyboard. The Key Press Events are services that offer the same functionality as that of the

equivalent

Introduction to ASU VIPLE, Arizona State University Page | 60

Direction Dialog in Microsoft VPL. As we can define the key individually and we can define more than

four keys, using Key Press Events is more flexible than using Direction Dialog.

Quiz 1: How do you make the robot to turn left? How do you make the robot to turn right?

Quiz 2: What could be a problem in driving the robot using this program?

Figure 5.7. Drive an EV3 robot by wire

Exercise 2. Improving the Driving Experience

It is hard to control the robot using the program in the previous exercise. The main problem is that the

robot does not stop or slow down when the key is released. We can improve it by removing the drive

power when the key is released, as shown in Figure 5.8.

Introduction to ASU VIPLE, Arizona State University Page | 61

Figure 5.8. ASU VIPLE program drive-by-wire using key press events, with key release programmed

Quiz: What does the Print Line service do in this program?

5.3 Line-following program in ASU VIPLE

Exercise 1. Installing a color sensor

Before you can write the line-following program, you need to install a color sensor (or a light sensor) on

your robot. The senor head must face to the floor, so that the robot can recognize the line and move

following the line on the floor. The distance between the color sensor’s head and the floor must be

between one or two coin’s thicknesses, so that the color sensor can better read the light reflection from

the floor. Depending on the color of the floor (background) and the color of the line, you need to

calibrate and find the good reflection values. You can use the buttons and screen on EV3 brick to do the

sensor value calibration, as discussed in Section 5.1.

Exercise 2. Line-follower

Figure 5.9 shows ASU VIPLE code that makes the EV3 follow a black line on the light-brown floor. The

initial position of the color sensor is on the black line or on the right side of black line. The If-activity

Introduction to ASU VIPLE, Arizona State University Page | 62

checks the sensor reading. If the reflection value is less than 20 (reading from black line), and the robot

is not in Adjusting state, the robot will turn right for 200 milliseconds and then move straight forward.

This action will make the robot moving away from the black line, resulting the sensor reading value to be

greater than 20. In this case, the robot will turn left and move towards the black line. When the sensor

sees the black line, it starts to move away from the black line. The variable Adjusting is used to make

sure that the robot completes the 200 milliseconds adjustment before it turns right.

The program does not have a loop. It is event-driven. The event source is the color sensor, which

generates events periodically. Whenever an event happens, the If-activity will be triggered and executed.

Figure 5.9. The line follower program in ASU VIPLE

Figure 5.10 shows the color sensor properties and the three EV3 Drive power values that control the

robot turning right, moving straightforward, and turning left.

Figure 5.10. Sensor properties and the Drive power settings

5.4 Sumo Robot Programming

Before you program your sumo-robot, install the color sensor in the front part of you robot and face to

the floor. In order to read the black ring outside the sumo-ring, the color sensor must be so close to the

floor, that you cannot insert more than two coins below the color sensor.

1

3

2

1

3

2

Introduction to ASU VIPLE, Arizona State University Page | 63

Exercise 1: Basic Sumo-Robot Algorithm

The color Sensor measures the light intensity, which enables your robot to distinguish between light and

dark and different colors. The code below shows that simple code that can detect the black ring of the

white sumo board.

Figure 5.11. Basic program for sumo robot

The basic sumo robot algorithm using a single sensor (color sensor) can be described as follows.

Sumo Algorithm 1: Basic Sumo with Light Sensor, with the Light Sensor Installed Faced to Floor

6. The robot moves forward;
7. If the light sensor detect a color change (an event that the robot runs into the edge ring), the

robot stops;
8. It moves backward for certain distance;
9. It turns a random number of degrees;
10. It returns (loops) to step 1.

To improve the performance of the sumo robot, you can use a touch sensor in addition to the color

sensor. When the touch sensor is pressed, your sumo robot should move against that direction. You can

also use an ultrasonic sensor to detect the opponent. The following algorithms give you the ideas how

you can program a winning sumo-robot.

Exercise 2: Adding a touch sensor to the sumo-robot

The algorithm in Exercise 1 is random and hopes to push the opponent out of the ring by chance. By

adding more sensors into the robot, your sumo robot will have a better chance to win. The following

algorithm assumes that a touch sensor is installed as the rear bumper of the robot to detect the attacks

from the behind.

Sumo Algorithm 2: Sumo Using Light Sensor and Touch Sensor

1. The robot moves forward;

Introduction to ASU VIPLE, Arizona State University Page | 64

2. If the touch sensor is pressed, robot moves backwards, trying to counter push the opponent.
You may consider to spin 180 degree to attack the opponent use your font effector!

3. If the touch sensor is released, robot stops and returns to step 1. As your robot does you have a
light sensor at the rear end, backward moving may easily moves out of the ring.

4. If the light sensor detect a color change, the robot stops;
5. It moves backward certain distance;
6. It turns a random number of degrees;
7. It returns (loops) to step 1.

This algorithm will avoid the robot being pushed out of the ring from the behind.

Exercise 3: Adding the ultrasonic sensor to the sumo-robot

Furthermore, an ultrasonic sensor can be added on the left (or right) side of the robot to detect the

opponent and attack the opponent proactively.

Sumo Algorithm 3: Sumo Using Light Sensor, Touch Sensor, and Ultrasonic Sensor

1. The robot moves forward;
2. If the ultrasonic sensor reading distance < 200, turn 90 degree left (or right if the sensor is

installed on the right side), and then return to step 1, trying to attack the opponent.
8. If the touch sensor is pressed, robot moves backwards, trying to counter push the opponent.

You may consider to spin 180 degree to attack the opponent use your font effector!
3. If the touch sensor is released, robot stops and returns to step 1. As your robot does you have a

light sensor at the rear end, backward moving may easily moves out of the ring.
4. If the light sensor detect a color change, the robot stops;
5. It moves backward certain distance;
6. It turns a random number of degrees;
7. It returns (loops) to step 1.

5.5 Wall-following program in ASU VIPLE

Before you start write the program, you need to install two sensors on your robot. A distance sensor

facing the right-side (for following the right-side wall) of the wall and a touch sensor in the front of the

robot.

Exercise 1. EV3 Robot Wall-following maze navigation in ASU VIPLE (main diagram)

First, we define the right-wall-following algorithm using the finite state machine in Figure 5.11.

Introduction to ASU VIPLE, Arizona State University Page | 65

Figure 5.11. Finite state machine describing the right-wall-following algorithm

Two variables are used. An integer type variable BaseDistance stores the desired distance to the wall,

which is initialized to 50 millimeter or the initial measurement of the range sensor. A string variable

Status is used to store the moving status of the robot, and it is initialized to “Forward.” The Status

variable can take one of these values: “Forward,” TurningLeft,” “TurnedLeft,” “TurningRight,” and

“TurnedRight.” We do not need a status value for turning “Left 1 degree” or “Right 1 degree,” as these

two actions can be done instantly, and other actions do not need to coordinate with these two status.

The execution process can be described in the following algorithm.

4. Variable BaseDistance = 400 (or initially measured distance);

5. The robot repeats all the following steps in a loop, until the touch-sensor-pressed event occurs;
6) Status = “Forward”; Robot moves forward;
7) Robot keeps measures the right side-distance in certain interval defined by polling frequency,

and it compares the newly measured distance with the distance stored in variable
BaseDistance;

8) If the distance measured is less than BaseDistance - 5, the robot turns one degree left, and
then returns to step 2;

9) If the distance measured is greater than BaseDistance + 5, turns one degree right, and then
returns to step 2;

10) If the distance measured greater than BaseDistance + 200, Status = “TurningRight90”;
start to turn 90 degree right; after turning, Status = “TurnedRight”; and then returns to step 2;

6. Touch sensor is pressed; robot moves backward 0.5 rotations, Status = “TurningLeft90”; start to
turn 90 degree left; after turning, Status = “TurnedLeft”; and then returns to step 2;

Following the finite state machine, we now can write the code for a robot to autonomously navigate

through a maze. Figure 5.12 shows the main diagram that implements the finite state machine. A main

brick, an ultrasonic sensor, a touch sensor, and a drive service are used in the program.

ForwardDistanceMeasured

< BaseDistance - 5

Left 1

degree

Start

DistanceMeasured

> BaseDistance + 5

Turning

Right90

DistanceMeasured > BaseDistance + 400

Turned

Right

rightFinished
Turning

Left90

Turned

Left

leftFinished

Touch-Sensor Touched

Right 1

degree

Introduction to ASU VIPLE, Arizona State University Page | 66

Figure 5.12. The main diagram of the right wall-following program

Exercise 2. Write the Init Activity

Figure 5.13. The Init Activity

Exercise 3. Write the Left1 Activity

The data connection for the two driver services are as follows.

Introduction to ASU VIPLE, Arizona State University Page | 67

Figure 5.14. The Left1 Activity and Data Connection

Exercise 4. Write the Right90 Activity

The data connection for the two driver services are as follows.

Figure 5.15. Right90 Activity and Data Connection

Exercise 5. Write the Left90 Activity

Based on the code Right90 to implement the Left90

Exercise 6. Write the Right1 Activity

Based on the code Left1 to implement the Right1

Exercise 7. Write the Backward Activity

Use negative power for both wheels

Introduction to ASU VIPLE, Arizona State University Page | 68

Figure 5.16. Backwards Activity

Exercise 8. Write the ResetState Activity

Figure 5.17. ResetState Activity

Exercise 9. Write the Forward Activity

Figure 5.18. Forward Activity and Data Connection

Exercise 10. Configure Sensors in Wall-following maze navigation in ASU VIPLE

Similar to Microsoft VPL, activities that define components can be defined in ASU VIPLE. In the previous

exercises, the codes of the activities, Init, Backward, and Left1 are developed.

For each sensor, we need to choose the partner and choose the sensor port that the device uses. For the

main brick and the drive service, the same configurations are used as used in Figure 6, Figure 7, and

Figure 8. Figure 5.19 shows the right-click window to configure the EV3 Ultrasonic distance sensor and

the Touch sensor, respectively. The configurations assume that all the devices will partner with My EV3

Introduction to ASU VIPLE, Arizona State University Page | 69

Brick 0, the Ultrasonic sensor is connected to senor port 3, and the Touch sensor is connected to senor

port 4 on the EV3 Brick.

Figure 5.19. Configurations of the EV3 Ultrasonic sensor and Touch sensor

The full code of right wall-following program and the video of the robot’s navigating the maze, as well as

other sample code, can be found in the ASU VIPLE site: http://venus.sod.asu.edu/VIPLE.

5.6 Wall-following program using event-driven programming style

Thus far, our algorithms have been implemented mainly using sequential programming, except the

predefined key press events and robot sensor events. Defining our own set of events provides several

advantages, including clearer code and better support parallel processing. In addition, using events

allows us to more closely represent the original finite state machine. Some of the transitions in the finite

state machine are actually events, rather than user input. In this section, we will redesign the foregoing

wall-following program using event-driven programming.

Exercise 1. Redesign Left90 activity using event-driven programming style

We start with turning “Left90”. We are supposed to move to “Turned Left 90” and “Forward” after the

“leftFinished” event triggers. Figure 5.20 demonstrates the changes required to define this event. Inside

the “Left90” activity, we will draw a line to the circle output port instead of the triangle output port. The

circle represents an event and declares that we want to trigger an event when we are done turning left

90. Since we are not drawing a line to the triangle, the activity block will never output a value to an

activity connected sequentially after the “Left90” activity.

http://venus.eas.asu.edu/WSRepository/ASU-VPL

Introduction to ASU VIPLE, Arizona State University Page | 70

Figure 5.20. Adding an event trigger in the “Left90” activity

Exercise 2. Redesign the other activities using event-driven programming style

Make similar changes in the “Left1,” “Right90,” “Right1,” and “Backward” activities.

Exercise 3. The Main diagram based on the event-driven activities

Now that we have defined our events in the activities, we need to update the Main diagram to handle

the events. An event handler is a piece of code which is executed whenever a certain event occurs. We

can define a custom event handler for our events using the “Custom Event” activity. By selecting one of

our activity blocks in the drop down menu, we can handle any events triggered by that activity block.

For example, if we select “Left90” in the “Custom Event” activity’s drop down box, the code following

that “Custom Event” activity will execute immediately after the code shown in Figure 5.20 reaches the

circle pin. Figure 5.21 shows the updated program which uses events to transition between states

instead of sequential programming. We also used a “Merge” activity to avoid repeating the “ResetState”

activity.

Introduction to ASU VIPLE, Arizona State University Page | 71

Figure 5.21. The right wall-following algorithm with custom events

5.7 Maze navigation using local best heuristic algorithm

Exercise 1. Implementing the Main diagram of the two distance algorithm

In this exercise, we use the maze navigation algorithm defined in the finite state machine defined in

Figure 5.22. We will use ASU VIPLE to implement this heuristic algorithm. As ASU VIPLE is an event-

driven language, it is the best way to specify the algorithm in a finite state machine. In the diagram, we

use two variables. The variable “Status” can take six possible string-type values of Forward, TurningRight,

TurnedRight, TurningLeft (Spin180), TurnedLeft, and Resume180. The int-type variable “RightDistance”

is used to store the distance to the obstacle after the robot turned right.

Introduction to ASU VIPLE, Arizona State University Page | 72

Figure 5.22. State Diagram of a maze navigation algorithm

The finite state diagram in Figure 5.22 implements a heuristic algorithm. Notice that the EV3 robot we

built can rotate the head, and thus, we can rotate the sensor without rotating the body of the robot.

The algorithm is said to be heuristic, because it cannot find a solution in all cases of mazes. However, it

has a good chance to find a solution in most mazes, given the information available collected by a single

range sensor.

Figure 5.23 shows the code of the Main diagram.

Figure 5.23. Main diagram

DistanceMeasured

< 400
Turned

Right

Turned

Left

rightFinished

Resume

180 DistanceMeasured

< rightDistance

Turning

Right

Turning

Left

leftFinished

DistanceMeasured

>= rightDistance

Resum180

Finished

Start

RightDistance DistanceMeasured

Forward

Introduction to ASU VIPLE, Arizona State University Page | 73

Exercise 2. Implementing SensorRight90

As the distance sensor head rotates, instead of the robot body rotating, the code for implementing the

SensorRight90 is shown as follows.

Exercise 3. Implementing the other activities

Follow the example in the exercise above and the activity codes in the Chapter 3 to implement the rest

of the activities.

Acknowledgment

The authors wish to acknowledge those who contributed and helped in conceptualization and

development of ASU VIPLE. Particularly, Dr. Yann-Hang Lee co-advised some of the student

teams working on the related projects. Garrett Drown developed the first version of the

eRobotics visual programming tool. Garret Walliman implemented the second version of the

visual programming language. Calvin Cheng helped in the early development of VIPLE and

contributed the EV3 APIs for VIPLE. Tara De Vries contributed to the service integration of

VIPLE development. Megan Plachecki, John Robertson, and Sami Mian contributed to the JSON

interface design, the implementation of the middleware on the Edison robot, and the robot

hardware design. Matthew De Rosa developed the VIPLE Unity simulator. Adam Lew, Joshua

Owens, Ankit Patel, Harshil Patel, and Peter Tueller contributed to the Web simulator.

Introduction to ASU VIPLE, Arizona State University Page | 74

Your Team Name:

ASU VIPLE with EV3 and Edison Robot Programming

Date Activity/Mission Completed Driver Name Time Stamp Instructor sign

 Chapter 2 Getting Started with ASU VIPLE

 Exercise 2-1 Hello World in ASU VIPLE

 Exercise 2-2 Input and Output in ASU VIPLE

 Exercise 2-3 A Simple Counter in ASU VIPLE

 Exercise 2-4 Using While-Loop to implement

Counter

 Exercise 2-5 Counter Activity in ASU VIPLE

 Exercise 2-6 Vending Machine

 Exercise 2-7 Garage Door Opener

 Exercise 2-8 Party Genearation

 Chapter 3 Simulated Robot Programming

 Exercise 3-1

 Exercise 3-2

 Exercise 3-3

 Exercise 3-4

 Exercise 3-5

 Chapter 4 Edison Robot Programming

 Exercise 4-1

 Exercise 4-2

 Exercise 4-3

 Exercise 4-4

 Exercise 4-5

Introduction to ASU VIPLE, Arizona State University Page | 75

 Exercise 4-6

 Exercise 4-7

 Exercise 4-8

 Exercise 4-9

 Exercise 4-10

 Chapter 5

Controlling EV3 Robots Using ASU VIPLE

 5.1

 Exercise 1

 Exercise 2

 Exercise 3

 5.2

 Exercise 1

 Exercise 2

 5.3

 Exercise 1

 Exercise 2

 5.4

 Exercise 1

 Exercise 2

 Exercise 3

 5.5

 Exercise 1

 Exercise 2

 Exercise 3

Introduction to ASU VIPLE, Arizona State University Page | 76

 Exercise 4

 Exercise 5

 Exercise 6

 Exercise 7

 Exercise 8

 Exercise 9

 Exercise 10

 5.6

 Exercise 1

 Exercise 2

 Exercise 3

 5.7

 Exercise 1

 Exercise 2

 Exercise 3

