
1

5Y Chen

101

9/29/2015

Yinong Chen

Lecture 14

From Object-Oriented Computing

To Service-Oriented Computing

Introduction to Engineering Using Robotics Laboratories

2

5Y Chen

101

9/29/2015

Table of Contents

Class and Objects from a Class2

Implement OOC Program in C#3

Implement SOC Program in C#4

Design Process of OOC and SOC Programs1

3

5Y Chen

101

9/29/2015

Features of Object-Oriented Computing

 A program consists data and functions (operations) that

manipulate data;

 A class consists of data members (variables) and function

members (methods);

 A class is an Abstract data type: Encapsulation of state in an

object that can only be accessed through operations defined

on them. Clean interface -- public and private components.

 Inheritance: extending a class by keeping the unchanged

parts. Supports code reuse.

 Classes can be organized in a hierarchy through inheritance.

 Dynamic memory allocation and de-allocation

 Dynamic binding

 Polymorphism

4

5Y Chen

101

9/29/2015

Object-Oriented and Service-Oriented
Software Development

Requirement analysis

Objects
development

Programmers

Problem decomposition

Object
testing

Services
testing

Component
library

Service
repository

Services
development

Programmers

Application building

Testing

Deployment

Application builder

5

5Y Chen

101

9/29/2015

Travel Preparation

Problem Definition (Requirements)

Input: The number of days to travel;

The country name;

The local temperature in Celsius;

Output: The amount of local currency needed

The local temperature in Fahrenheit

6

5Y Chen

101

9/29/2015

Problem Decomposition

• Enter numbers of days to travel;
• Enter the country name
• Make use of other classes to perform computation;
• Print output;

Main class

• Hotel cost in USD;
• Rental car cost in USD;
• Meal cost in USD;
• Total cost

myCost class

• Convert USD amount
into local currency
amount;

CurrencyConversion class

• Convert Celsius to
Fahrenheit;

• Convert Fahrenheit
to Celsius;

TemperatureConversion class

days amount
in USD

amount
in USD

Amount in
local currency

Celsius
Fahrenheit

7

5Y Chen

101

9/29/2015

Class Members

A class consists of a list of members

 Each member can be
 a data member, or called a variable

 a function member, or called a method

 Function members
 Constructor: is a function member that has the same

name as the class name. It is used to
• Initialize the data members in the class

• Pass values into the class, if the values will be used by multiple
function members

 Other function members are used
• Manipulate data members;

• Provide reusable functions for other classes to call;

8

5Y Chen

101

9/29/2015

Class versus Objects

1. A class is a structural design, or a called blueprint

 A member can be private, protected, or public
 private members can be accessed in the class only

 Protected members can also be accessed by child classes

 Public members can be accessed all classes in application.

 Static member: If static keyword is used, the
member can be accessed without instantiation:
 className.memberName

2. A class can be used to instantiate one or more objects
 ClassName refName = new ClassName();
 refName.memberName to access the member

3. A set of functions (methods) are grouped in one class;

4. A group of classes are organized as a namespace

9

5Y Chen

101

9/29/2015

using System;
class TravelPreparation {

static void Main(string[] args) { // The main method
Console.WriteLine("Please enter the number of days you will travel");
String str = Console.ReadLine(); // read a string of characters
Int32 daysToStay= Convert.ToInt32(str); // Convert string to integer
myCost usdObject = new myCost(daysToStay); // Create an object
int usdCash = usdObject.total(); // Call a method in the object

Console.WriteLine("Please enter the country name you will travel to");
String country = Console.ReadLine();
CurrencyConversion exchange = new CurrencyConversion();
Double AmountLocal = exchange.usdToLocalCurrency(country, usdCash);
Console.WriteLine("The amount of local currency is: " + AmountLocal);

Console.WriteLine("Please enter the temperature in Celsius");
str = Console.ReadLine();
Int32 celsius = Convert.ToInt32(str);
TemperatureConversion c2f = new TemperatureConversion();
Int32 fahrenheit = c2f.getFahrenheit(celsius);
Console.WriteLine("The local temperature in Fahrenheit is: " + fahrenheit);

}
}

Main Class is the class with the Main method

10

5Y Chen

101

9/29/2015

class TemperatureConversion
{

public Int32 getFahrenheit(Int32 c)
{

Double f = c * 9 / 5 + 32;
return Convert.ToInt32(f);

}
public Int32 getCelsius(Int32 f)
{

Double c = (f - 32) * 5 / 9;
return Convert.ToInt32(c);

}
}

Return typeClass name Method name

Parameter
passing
into
function
directly

Method 1

Methods2

TemperatureConversion c2f = new TemperatureConversion();
Int32 fahrenheit = c2f.getFahrenheit(celsius);

No
constructor

11

5Y Chen

101

9/29/2015

Reference to an Object

TemperatureConversion c2f = new TemperatureConversion();
Int32 fahrenheit = c2f.getFahrenheit(celsius);

class TemperatureConversion
{

public Int32 getFahrenheit(Int32 c)
{

Double f = c * 9 / 5 + 32;
return Convert.ToInt32(f);

}
public Int32 getCelsius(Int32 f)
{

Double c = (f - 32) * 5 / 9;
return Convert.ToInt32(c);

}
}

42F1D761C

42F1D761C

c2f

c2f.getFahrenheit(23);

c2f. getCelsius(98);

12

5Y Chen

101

9/29/2015

class myCost {
private Int32 days;

public myCost(Int32 daysToStay) {
days = daysToStay;

}

private Int32 hotel() {
return 100 * days;

}

private Int32 rentalCar() {
return 30 * days;

}

private Int32 meals() {
return 20 * days;

}

public Int32 total() {
return hotel() + rentalCar() + meals();

}
}

The value is provided when an
object is created.

myCost usdObject = new myCost(7);
int usdCash = usdObject.total();

Constructor: is a method that has
the same name as the class.
Allow to pass a value into the
class and used by all methods

Data member

13

5Y Chen

101

9/29/2015

class CurrencyConversion {
public Double usdToLocalCurrency(String country, Int32 usdAmount) {

switch(country) {
case "Japan":

return usdAmount * 117;

case "EU":
return usdAmount * 0.71;

case "Hong Kong":
return usdAmount * 7.7;

case "UK":
return usdAmount * 0.49;

case "South Africa":
return usdAmount * 6.8;

default:
return -1;

}
}

}

There is one function member
only in this class. If there
would be more methods and
all methods use the same
parameters, we would want to
pass the parameters into the
class, instead of into
individual methods.

This class does not need to have
a constructor: It has no data
member;
The parameter is passed to the
function member, instead of
into the class for all member
functions to use.

14

5Y Chen

101

9/29/2015

WCF Client

Proxy

CBA

Endpoint

A B C

Endpoint

A B C

Endpoint

A B C

WCF Service.svc

14

Developing Web Services in
Windows Communication Foundation

Endpoint/Proxy

Address
(where)

Binding
(how)

Contract
(what)

15

5Y Chen

101

9/29/2015

Develop Web Services Using WCF15

Text Chapter 3,
section 3.2.1
You did this
exercise in
assignment 1

16

5Y Chen

101

9/29/2015

IService.cs and Service.cs Files16

Endpoint/Proxy

Address
(where)

Binding
(how)

Contract
(what)

17

5Y Chen

101

9/29/2015

17 Difference between .asmx and .svc services

18

5Y Chen

101

9/29/2015

18

The language
interfaces of
.asmx and .svc
services are
different, but
both have the
same WSDL
interface for
remote accesses.

19

5Y Chen

101

9/29/2015

19 WSDL: Web Service Description Language

 WSDL is used to describe Web services, including four critical
aspects of Web services:

 Functionality description of the services in standard
taxonomy;

 Contract of parameter types and return type of the function
(service) calls;

 Binding information about the transport protocol to be
used, usually, SOAP;

 Address information for locating the specified service.

 The last three aspects can be automatically generated.

 Web services described in WSDL can be searched, matched
with the requirement.

 Web services described in WSDL provides the remote call
detail.

20

5Y Chen

101

9/29/2015

20 Logical Structure of WSDL Document’s Elements

service

port
(URL) . . .

binding
(soap)

portType

operation

message, in

types

types

message, out

endpoints port
(URL)

binding
(soap)

. . .

definitions, with a name and namespaces used

portType

operation

message, in

types

types

message, out

Multiple
methods

Method
name of
the class

Method
parameter
types

Method
return type

service
A class A namespace

of classes

Address

Binding

C
o

n
tr

ac
t

21

5Y Chen

101

9/29/2015

Summary

 An object-oriented application consists of multiple
classes;

 Each class consists of data members (variables) and
function members (methods);

 Each member can be public, protected, or private;

 A service corresponds to a class;

 A service typically does not have data members;

 Not all public methods of a service can be accessed
remotely;

 Only public methods further marked with
[OperationContract] can be accessed remotely;

 A service can have multiple methods marked with
[OperationContract]

	Slide Number 1
	Table of Contents
	Slide Number 3
	Object-Oriented and Service-Oriented Software Development
	Travel Preparation
	Problem Decomposition
	Class Members
	Class versus Objects
	Slide Number 9
	Slide Number 10
	Reference to an Object
	Slide Number 12
	Slide Number 13
	Developing Web Services in�Windows Communication Foundation�
	Develop Web Services Using WCF
	IService.cs and Service.cs Files
	Slide Number 17
	Slide Number 18
	WSDL: Web Service Description Language
	Logical Structure of WSDL Document’s Elements
	Summary

