
Dr. Yinong Chen

Introduction to Engineering Using Robotics Experiments

Outline

 Historical Perspective

 Programming Language Generations

 Programming Language Paradigms

 Imperative Programming Paradigm

 Writing Imperative Programs in C#

 Console Interface vs. Graphic User Interface

 Next…

 Object-Oriented Computing

 Service-Oriented Computing

 Web-based Computing

 Mobile Computing
2

Generations of Programming Languages
Classification by Time

3

5th

Data flow / Event-driven
Workflow
Visual Programming,
• Alice
• VPL
• Phone Inventor

First-Generation: Machine language

 Operator and operands are coded in to binary

 Each instruction is a binary (or hexadecimal) number

4

Second-Generation: Assembly language

 A mnemonic system for representing machine
instructions

 One-to-one correspondence (table) between machine
instructions and assembly instructions

 Converted to machine language by a program called an
assembler: look up the table

Program Examples

Machine language in HEX

156C
166D
5056
30CE
C000

Assembly language

LD R5, Price
LD R6, ShippingCharge
ADDI R0, R5 R6
ST R0, TotalCost
HLT

5

Machine
code

Assembly
code

Third Generation Language

 Uses high-level imperative languages
 Similar to our pseudo-code

 Machine independent (mostly)

 Examples: FORTRAN, COBOL, C

 Each primitive corresponds to a sequence of machine
language instructions

 Converted to machine language by a program called a
compiler

6

Evolution of Programming Languages

7

Time

Paradigm

Service-oriented

VPL
C#
Java

Imperative Programming
Assembly, Algo, FORTRAN,
Pascal, C

Functional
Programming

e.g. LISP/Scheme

Logic/
Declarative

Programming
e.g. Prolog

Spectrum of Programming Languages

Time

Paradigms

50s 60s 70s 80s 90s 00s 10s

Object-Oriented
Programming
C++, Java, C#
CSE100/110

Component-Based
Programming

C++,
Java, C#

Service-Oriented
Programming

Java, C#, VPL/ASU-VPL

8

Workflow-based languages
VPL, WF, Oracle BPEL

Event-driven
VPL

9

What is a Program?
Program

Algorithm Data structure

Process (steps)
of data
manipulation

Objects of the
manipulation

Emphasis:
Imperative /
Procedural
Paradigms

Emphasis:
Object-
Oriented
Paradigm

Data structure

10

Imperative Programming Paradigm

Fully specified and fully controlled manipulation of

named data in a step-wise fashion.

 Developed as abstractions of von Neumann machine

(stored program concept).

 Programs are algorithmic in nature: do this, then

that, then repeat this ten times -- focuses on how

rather than what.

Why popular?

 Performance – match the machine

 Culture – reading manuals

 Foundation of object-oriented programming

Flowchart

W1 > W2
?

W1 > W3
?

Yes

W3 > W4
?

W1 > W4
?

Yes No

Yes

P1 won P4 won

No Yes

P3 won P4 won

No

No

W2 > W3
?

W3 > W4
?

W2 > W4
?

Yes No

Yes

P2 won P4 won

No Yes

P3 won P4 won

No

Input the values of W1, W2, W3, W4

11

Basics of Programming

1. List the library packages to be used, e.g., I/O package;
2. Declare variables
3. Initialize variables

 From outside (keyboard, sensors, networks);
 Hardcoded assignment, x = “Hello World”; y = 7;

4. Manipulate variables (computing)
 One time modification, e.g., x = x + 1; z = x + y;
 Multiple modifications using a loop;

5. Selections
 Select one out of two: if-then-else;
 Select one out of multiples: switch;

6. Loops
 For-loop: Iterate a fixed number of times
 While-loop: Iterate until a condition is met

12

Implementation: Map the Problem to Program
using System; // It includes the most frequently used lib functions
class weightLift { // main class

static void Main() {
// Declare variables (memory spaces)
Int32 W1, W2, W3, W4; // for holding the weight lifted by each player
string str; // for temporarily holding the input from keyboard;

// Enter the weights lifted by each player
Console.WriteLine("Please enter the weight lifted by Player 1\n");
str = Console.ReadLine(); // read a string of characters
W1 = Convert.ToInt32(str); // Convert the string to an integer

Console.WriteLine("Please enter the weight lifted by Player 2\n");
str = Console.ReadLine(); // read a string of characters
W2 = Convert.ToInt32(str); // Convert the string to an integer

Console.WriteLine("Please enter the weight lifted by Player 3\n");
str = Console.ReadLine(); // read a string of characters
W3 = Convert.ToInt32(str); // Convert the string to an integer

Console.WriteLine("Please enter the weight lifted by Player 4\n");
str = Console.ReadLine(); // read a string of characters
W4 = Convert.ToInt32(str); // Convert the string to an integer 13

Map the Problem to Program (contd.)

if (W1 > W2)
{

if (W1 > W3)
{

if (W1 > W4)
{

Console.Write("Player 1 Wins\n");
}
else
{

Console.Write("Player 4 Wins\n");
}

}
else
{

if (W3 > W4)
{

Console.Write("Player 3 Wins\n");
}
else
{

Console.Write("Player 4 Wins\n");
}

}
}

W1 > W2
?

W1 > W3
?

Yes

W3 > W4
?

W1 > W4
?

Yes No

Yes

P1 won P4 won

No Yes

P3 won P4 won

No

14

Map the Problem to Program (contd.)
else

{
if (W2 > W3)
{

if (W2 > W4)
{

Console.Write("Player 2 Wins\n");
}
else
{

Console.Write("Player 4 Wins\n");
}

}
else
{

if (W3 > W4)
{

Console.Write("Player 3 Wins\n");
}
else
{

Console.Write("Player 4 Wins\n");
}

}
}

}
}

No

W2 > W3
?

W3 > W4
?

W2 > W4
?

Yes No

Yes

P2 won P4 won

No Yes

P3 won P4 won

No

W1 > W2
?

15

Add and Display a List of Numbers in a While-Loop

using System;
class addList
{

static void Main()
{

Int32 i = 0;
Int32 sum = 0;
while (i<10)
{

sum = sum + i;
Console.WriteLine("i = {0} sum = {1} ", i, sum);
i++;

}
Console.WriteLine("Program completed.");

}
}

16

Interface to Users

Console input and output

 Minimum effort on the interface design

 Used by developers in the development stage

Windows-based GUI (Graphic User’s Interface)

 The application is running on the operating system
of the computer

 Example: Install a game and play on your computer

Web-based GUI

 The application is running on a remote server;

 User access the application through a Web browser;

 Example: Play an internet game

Mobile Device GUI

 Windows Phone, iPhone, Android Phone
17

Console Interface versus Graphic User Interface

18

Traditional Programming Languages vs.
Scripting Languages

• They come and go
– Fortran
– Cobol
– Pascal
– ADA
– Lisp
– Scheme
– Prolog
– Java
– C
– C++
– Php
– Ruby on Rails
– SQL
– Java
– C#

• But basic concepts remain

C C++

C#

Java

Php

Fortran

ADA

Pascal

JavaScript

Perl

Python

AJAX

TCL

XSLT

CSS

C#

Traditional
programming

languages

Scripting
languages

VBScript

Scripting Languages

• Job control languages and
shells:

– IBM JCL

– Unix Script

– AppleScript

• Visual programming
languages/Workflow:
– Alice

– National Instrument LabView

– EV3 Programming Language

– Microsoft VPL / ASU - VPL

• Application-specific
languages:
– QuickC

– Emacs Lisp

– Parallax C for robotics programming

• Extension/embeddable languages

– SpiderMonkey embedded in
Yahoo Widget Engine
– Adobe Flash (ActionScript)
– TCL
– Perl
– Python

• Web client-side scripting:

– AJAX
– CSS, XSLT
– JavaScript
– VBScript, C#
– ECMAScript

• Dynamic languages and server-side
Scripting & Computing:

– Java
– PHP
– C# on ASP .Net
– Ruby on Rails

	Programming Languages
	Outline
	Generations of Programming Languages�Classification by Time
	First-Generation: Machine language
	Program Examples
	Third Generation Language
	Evolution of Programming Languages
	Spectrum of Programming Languages
	What is a Program?
	Slide Number 10
	Flowchart
	Basics of Programming
	Implementation: Map the Problem to Program
	Map the Problem to Program (contd.)
	Map the Problem to Program (contd.)
	Add and Display a List of Numbers in a While-Loop
	Interface to Users
	Console Interface versus Graphic User Interface
	Traditional Programming Languages vs.�Scripting Languages
	Scripting Languages

