
Algorithms

Dr. Yinong Chen

Introduction to Engineering Using Robotics Laboratories

Roadmap

 The Concept of Algorithms

 Algorithm Primitives

 Algorithm Complexity

 Examples of Algorithms

 Robotics Algorithms

2

What is Computer Science?

 is the study of the theoretical foundations of
information (data) and computation, and of
practical techniques for their implementation and
application in computer systems;

 is frequently described as the systematic study of
algorithmic processes (algorithms) that describe and
transform information.

 answers the fundamental question:

What can be (efficiently) automated?

29 September 2015 3

Definition of Algorithms
 An algorithm is an ordered set of unambiguous,

steps (primitives) that defines a terminating process.

 An algorithm needs to

 be correct: meet the specification

 terminate : deliver the result in limited time

 Computable in limited steps

 Be efficient

 Efficient: Computation time in a polynomial function of
input size; For example: T(n) = n3

 Not efficient: Computation time is an exponential
function of input size; For example: T(n) = 2n

4

Pseudo code Primitives
 Assignment

name expression

 Conditional selection

if condition then actions

 Repeated execution
while condition do actions

 Procedure
procedure name (generic names)

actions / activities

5

No
Yes

A procedure is a block of
pseudo code

6

Procedure CountTo10 // activity in VPL
Count 0;
While (Count < 10) do
{

print “The number is ” and Count);
Count Count + 1;

}

L1.7

Algorithm Complexity Measurement

Worst-case: (usually)
• T(n) = maximum time of algorithm on

any input of size n.
Average-case: (sometimes)

• T(n) = expected time of algorithm over
all inputs of size n.

• Need assumption of statistical
distribution of inputs.

Best-case: (NEVER)
• Cheat with a slow algorithm that works

fast on some input.

L1.8

Algorithm Complexity Considerations

• The real execution time depends on the input: An already
sorted sequence is easier to sort. Thus, algorithm analysis
considers the worse case or the average case;

• The execution time depends on the input size. Sorting 10
numbers takes longer than sorting 5 numbers. Thus, the
input size n is considered a parameter (variable);

• Any problem of small size can be easily solved, and thus,
algorithm analysis focuses on the execution time when
the size is large;

• Execution time is machine-dependent. Algorithm
analysis calculates the steps (operations) needed, instead
of the time.

Weight Lifting Competition

Problem Definition
Input: Given a list of numbers, representing the

weights lifted by players
Output: Find the largest weight, representing the

winner

Player1: W1 = input a number from keyboard

Player2: W2 = input a number from keyboard

Player3: W3 = input a number from keyboard

Player4: W4 = input a number from keyboard

9

Algorithm 1 (Flowchart)

W1 > W2
?

W1 > W3
?

Yes

W3 > W4
?

W1 > W4
?

Yes No

Yes

P1 won P4 won

No Yes

P3 won P4 won

No

No

W2 > W3
?

W3 > W4
?

W2 > W4
?

Yes No

Yes

P2 won P4 won

No Yes

P3 won P4 won

No

Input the values of W1, W2, W3, W4

Find the largest number, given four input numbers

Complexity analysis
Worst case: 3 comparisons
Average case: 3 comparisons
Best case: 3 comparisons

10

Input the values of W1, W2, W3, W4
Max = W1
Pwin = P1

Put the largest
weight in Max;
Put the player with
the max weight in
Pwin

W2 > Max
?

Yes

NoMax = W2
Pwin = P2

Print (Max, Pwin)

W3 > Max
?

Yes

Max = W3
Pwin = P3

No

W4 > Max
?

Yes

Max = W4
Pwin = P4

No

Complexity analysis
Best case:

3 comparisons and
2 assignments

Worst case:
3 comparisons and
8 assignments

Average case:
3 comparisons and
5 assignments

Algorithm 2 (Flowchart)

11

2+
4+4+4+
6+6+6+
8 = 40

 40/8 = 5

Algorithms sorting numbers: Bubble Sort
http://www.cs.hope.edu/~dershem/alganim/animator/Animator.html

To sort 8 numbers, it takes 28 comparisons and 19 swaps.
To sort 80 numbers, it takes 3160 comparisons and 1469 swaps. 12

Algorithms sorting numbers: Merge Sort
http://www.cs.hope.edu/~dershem/alganim/animator/Animator.html

To sort 8 numbers, it takes 32comparisons and 9 swaps.
To sort 80 numbers, it takes 800 comparisons and 195 swaps. 13

Algorithm Complexity Analysis

Bubble Sort:
To sort n = 8 numbers, it takes 28 comparisons and 19 swaps.
To sort n = 80 numbers, it takes 3160 comparisons and 1469 swaps.
Complexity = O(n2)

Merge Sort:
To sort n = 8 numbers, it takes 32 comparisons and 9 swaps.
To sort n = 80 numbers, it takes 800 comparisons and 195 swaps.
Complexity = O(nlogn)

CSE205: Basic Algorithm Design
CSE310: Algorithm Design and Complexity Analysis

It concerns the time (number of operations) and space (memory) used
when the problem size is large. It is not a concern when the size is small.
The big-O notation is used to estimate the upper bound of the complexity.

Big-O notation: Upper bound

14

Big-O notation: Upper bound

The Complexity of the Maze Algorithms

15

• Use the number of turns or degrees, and the units of distance
needed to travel from start to exit;

• Evaluate different algorithms (Lab 7 manual)
• Random Algorithm

• Wall-Following Algorithm

• Heuristic Algorithm of Local Best Decision

• Greedy Algorithm based on the First Working Solution

• Hard Coding

1234

4

567

8 44
start

9 10

Autonomous Maze Traversing Algorithm

1. The robot is in state “Forward” and moves forward;

2. If the distance measured by the range sensor is less than 400
millimeter, it turns (90 degree) right;

3. After the event “rightFinished” occurs, it saves the distance
measured to the variable RightDistance;

4. The robot then spins 180 degree left to measure the distance on
the other side;

5. After the event “leftFinished” occurs, it compares the distance
measured with the values saved in the variable RightDistance;

6. If the current distance is longer, it transits to the state
“Forward” to move forward;

7. Otherwise, it resumes (spins 180 degree) to the other direction;

8. Then, it transits to step 1: to move forward.

16

Wall-Following Algorithm

1. Variable DV = Ultrasonic sensor measure;
2. The robot repeat all the following steps in a loop, until the

touch sensor is pressed;
1) Robot moves forward;
2) Robot keeps measures the left-distance in certain interval,

and it compares the newly measured distance with the
distance stored in variable DV.

3) If the distance measured is greater than DV + 1, turns one
degree left, and then returns to step 2;

4) If the distance measured is less than DV - 1, the robot
turns one degree right, and then returns to step 2;

5) If the distance measured greater than DV + 5, turns 90
degree right, and then returns to step 2;

6) Returns to step 2;
3. Touch sensor is pressed; robot moves backward 0.5 rotations,

and then turns left 90 degree;
4. Return to step 2.

17

Complexity of the Robotics
Algorithms

 Dealing with the computational steps and
mechanic steps representing the robot’s move.

 Which part is more time consuming?

 Degrees of turning

 Distance traveled

18

	Slide Number 1
	Roadmap
	What is Computer Science?
	Definition of Algorithms
	Pseudo code Primitives
	A procedure is a block of �pseudo code
	Algorithm Complexity Measurement
	Algorithm Complexity Considerations
	Weight Lifting Competition
	Algorithm 1 (Flowchart)
	Slide Number 11
	Algorithms sorting numbers: Bubble Sort
	Algorithms sorting numbers: Merge Sort
	Algorithm Complexity Analysis
	The Complexity of the Maze Algorithms
	Autonomous Maze Traversing Algorithm
	Wall-Following Algorithm
	Complexity of the Robotics Algorithms

