
Dr. Yinong Chen

Lecture 3

ASU VIPLE

Visual IoT/Robotics Programming Language Environment

Lecture 3

ASU VIPLE

Visual IoT/Robotics Programming Language Environment

1

2

Lecture Outline

Service-Oriented Programming 3

Parallel Programming 4

General-Purpose Programming 2

Introduction to VIPLE 1

Event-Driven Programming 5

Application of Visual Programming Languages

 Most workflow languages today are visualized;

 Simplified workflow languages are used in education:

3

 MIT: Scratch - Visual Game Programming

 University of Virginia and Carnegie Mellon:

 Alice Visual Game Programming

 MIT App Inventor: Phone App Visual Programming

 Lego NXT & EV3 – Visual Robotics Application

Development

 Microsoft Robotics Developer Studio Visual

Programming Language (MRDS VPL)

 ASU VIPLE: Visual IoT/Robotics Programming

Language Environment

ASU VIPLE Download Site

• Download Link:
 http://venus.eas.asu.edu/WSRepository/VIPLE/

4

http://venus.eas.asu.edu/WSRepository/VIPLE/
http://venus.eas.asu.edu/WSRepository/VIPLE/
http://venus.eas.asu.edu/WSRepository/VIPLE/

VIPLE vs. Workflow Foundation

5

Workflow
Foundation

ASU
VIPLE

XML XAML
Intermediate

languages

.Net Framework

RESTful and
WSDL service

Web
services

VIPLE
Services

(IoT/Robotics)
Applications

(Web)
Applications

Markup

language

CodeActivity

VIPLE Programming Paradigms

VIPLE Features

 General-purpose control flow programming

 Service-oriented computing, supporting RESTful and WSDL

 Parallel / multithreading programming, with underlying threads

safety

 Event-driven programming, with built-in and custom events

 Workflow and visual programming

 IoT and Robotics programming

Two Main Purposes

 An example of software integration: After taking CSE445 and

CSE446, ASU undergraduate students can create such tools.

 A real tool for high school and university students to learning

the first programming language 6

Basic Activities of VIPLE

 Variable: supports basic types (Int32,

Double, String, Boolean, etc.).

 Calculate: Calculate the value of any C#

expression.

 Data: Introducing the constant values in

regular programming language

There are dozen of basic activities, and many
composite services in VIPLE Repository

7

Basic Activities (cont.)

 Join: proceeds when all threads arrive;
It can be used for waiting parallel data or
threads.

 Merge: proceeds when one of the data or
threads arrives. It can be used for waiting
alternative data, e.g., creating the returning
point of a loop;

 If: same as regular programming language
construct; It allows multiple conditions.

 Switch: same as regular programming
language construct;

 While: start a loop;

 Break exits a loop, and

 End While returns to While
8

Basic Activities (cont.)

Basic
Activity

Activity
Activity

Service

 Construct a composite activity (block or

module)

Application

 Basic Activity and Activity are
building blocks of a diagram or
flowchart.

 Activity can be wrapped into a service

 Data transfer between

 activities are through global
variables and parameter
passing

 services don’t support global

9

VIPLE Services

10

General-purpose

and event services

Generic robotic services

Vendor-specific

robotic services

VIPLE Programming: Output

11

General-purpose

and event services

VIPLE Programming: Input

12

VIPLE Programming: Variable and Loop

13

Use state. to
access variable

Activity and Parameter Passing

14

Add a
parameter

for the
activity

Use instance. to
access parameter

ASU VIPLE is Service Oriented

15

.Net Framework

Workflow
Foundation

Web services and
applications

ASP
.Net

Robotic services
and Applications

ASU Service and Application Repository
Service
Broker

Service
Provider

Robotic Applications in VIPLE
Service
Client

MRDS
VPL

ASU
VIPLE

Other
Frame
works

Converting an Activity into a Service

 An activity is a part of an application

 It cannot be reused in another application

 To convert an activity into a service:

Right click:

16

After a Custom Service is Created

 When you “Export as a Service”, you can save the service

anywhere you want.

 By default, it will be saved into the “CustomServices”

folder in your VIPLE program folder.

 When VIPLE is started, all services will be imported into

the VIPLE service list, where you find the other services

like Print Line and Text to Speech.

 To delete (remove) a custom service, open the folder

CustomServices and delete the file of the service. After

you restart the service, the custom service will disappear

from the service list.

 To share a service in another application, copy the service

file into the CustomServices folder of another application.

 17

Calling RESTful Services

18

http://venus.eas.asu.edu/WSRepository/S

ervices/EncryptionRest/Service.svc/Decry

pt?text=AdAqmhVEN2A=

http://venus.eas.asu.edu/WSReposito

ry/Services/EncryptionRest/Service.s

vc/Encrypt?text=Hello

http://venus.eas.asu.edu/WSRepository/Services/EncryptionRest/Service.svc/Decrypt?text=AdAqmhVEN2A=
http://venus.eas.asu.edu/WSRepository/Services/EncryptionRest/Service.svc/Decrypt?text=AdAqmhVEN2A=
http://venus.eas.asu.edu/WSRepository/Services/EncryptionRest/Service.svc/Decrypt?text=AdAqmhVEN2A=
http://venus.eas.asu.edu/WSRepository/Services/EncryptionRest/Service.svc/Encrypt?text=Hello
http://venus.eas.asu.edu/WSRepository/Services/EncryptionRest/Service.svc/Encrypt?text=Hello
http://venus.eas.asu.edu/WSRepository/Services/EncryptionRest/Service.svc/Encrypt?text=Hello

Calling a WSDL Service

19
http://venus.eas.asu.edu/WSRepository/S

ervices/RandomStringSVC/Service.svc

http://venus.eas.asu.edu/WSRepository/Services/RandomStringSVC/Service.svc
http://venus.eas.asu.edu/WSRepository/Services/RandomStringSVC/Service.svc

Code Activity: Wrap any C# Class into an Activity

20

Sequential vs. Parallel Computing

21

 Sequential version of adding many numbers

 sum = 𝑖𝑛
𝑖=0

Parallel / Distributed Computing

 Parallel version of adding many numbers

22

Events and Event Handling

 A common technique in distributed computing
 XML validation and handling

 Exceptions and handling

 Mouse click and code processing the click

 Sensory input arrived (touch sensor) and the action

 A timer elapsed and the action

 Event-driven computing assumes there are multiple

processors to handle events in parallel

 Event handling process
 Class A publishes event delegates (signatures) for

subscription;

 Class B implements an event handler and subscribes to an

event delegate by adding the handler name into the delegate;

 When an event occurs in class A, class A will callback the

handler in class B, which handles the event.

23

Events and Event Handling (Contd.)

24

Events taking

Delegates
(Signatures)

Class A (event service)

Event subscribing

Event handling

Class B (event client)

Callbacks

Event subscribing

Event handling

Class C (event client)

Events

Concurrency and Events

in Robotics Programming

25

Bumper
sensor

Sonar
sensor

Timer

Orchestration

Motor 1

Motor 2

Servo

Event
notification

Message
Box

Event output

Data output

Data and event
outputs

Concurrency and Events

 in Robotics Programming

 Handling sensory inputs and controlling actuators

must be dealt with concurrently, as otherwise

sensor inputs can easily be ignored and actuators

can get starved.

 Orchestration and composition should not be in

control flow model. Event-driven model is a

better way to handle such applications.

 Event notification can be sensible alone, or in

combination with the return data

26

Event-Driven Notification

27

Activity /
Service

User
Activity

Activity /
Service

User
Activity

Event signals

Event signals, e.g.,
timer, or

completion

Regular return value

Event-Driven Programming

VIPLE supports two types

of events

 Custom events:

Allow programmers to

define an event as an

activity’s output

 Built-in events:

Predefined services in the

VIPLE service list that

generate events
28

General-purpose

and event services

Event-Driven Programming: Custom Event

29

 Implementing the CountToN activity with event output

Event-Driven Programming: Custom Event

30

 Accessing the custom event

 Custom events

and built-in

events

Counter generates
different data in each

iteration, it works
without using events

If an activity can
generate the same
data, we need to
use event output

General-purpose

and event services

Event-Driven Programming: Key Press Event

31

Printed 5
second
later

Parity Bit Generation Using Key Press Event

 An ASCII code consists of 7 bits of 0s or 1s.

 The 8th bit is often generated for parity checking:

 If the first 7 bits has odd number of 1s, the 8th bit is 0, otherwise,

it is 1, to keep the total number of 1s is an odd number.

 Write a VIPLE application to generate the odd-parity bit of an

ASCII code. Example:

32

