Lecture 3
ASU VIPLE
Visual IoT/Robotics Programming Language Environment

Dr. Yinong Chen

ESL Srgrussogzor school of computing, informatics,
engmesmng decision systems engineering

Lecture Outline

Introduction to VIPLE

Application of Visual Programming LLanguages

¢ Most workflow languages today are visualized;

5

* Simplified workflow languages are used in education:
' MIT: Scratch - Visual Game Programming
'3 University of Virginia and Carnegie Mellon:
=~ Alice Visual Game Programming
g> MIT App Inventor: Phone App Visual Programming

Lego NXT & EV3 — Visual Robotics Application
Development

58 * Microsoft Robotics Developer Studio Visual
* Programming Language (MRDS VPL)

» % ASU VIPLE: Visual IoT/Robotics Programming
Language Environment 3

ASU VIPLE Download Site

Download Link:
http://venus.eas.asu.edu/WSRepository/VIPLE/

-

€ C A [J venus.eas.asu.edu/\WSRepository/VIPLE/

VIP® VISUAL IOT ROBOTICS PROGRAMMING
IANGUAGE ENVIRONMENT

ASU VIPLE Download and Resources

+ ASU VIPLE Documents
- o ASU VIPLE Introduction’ ASU VIPLE Tutorial
o Textbook: Service-Oriented Computing and Web Software Integration

o Repository: ASU Repository of Web Services and Web Applications

ASU VIPLE and Edison Middleware Downloads

o ASU VIPLE Software Download. Unzip the file and start the application from file: VisualPn
o Intel Edison Board Installer: A link to Intel Website. The site will mstruct vou to mstall Lin

VIPLE Middleware to run. ASU VIPLE middleware will communicate with ASTU VIPLE on

vou use different sensors and motors for vour robot.
o ASU VIPLE Middleware on Edison Unzip the file and copy all the folders and files into Ed

o Basic Sample Programs Written i ASU VIPLE
o Full Sample Programs Written in ASU VIPLE for Instructors only. Please contact Dr. Chen

- ASU VIPLE Videos

o EV3 Wall-Following, with self-adjustment: Link to Video at AST and Video file download :
¢ EV3 Line Follower: Link to Video and Video file download
s Edison Robot Maze Navigation by measure richt and left distances and Video file dowrdoad

http://venus.eas.asu.edu/WSRepository/VIPLE/
http://venus.eas.asu.edu/WSRepository/VIPLE/
http://venus.eas.asu.edu/WSRepository/VIPLE/

VIPLE vs. Workflow Foundation

(IoT/Robotics) VIPLE Web (Web)
Applications Services services Applications

RESTful and
PR \\/SDL service Bhe \Workflow

PRl Foundation
CodeActivity

~

Markup Intermediate
language Ianguages

.Net Framework

VIPLE Programming Paradigms
IPLE Features

» General-purpose control flow programming

4

L)

L)

(g

L)

L)

» Service-oriented computing, supporting RESTful and WSDL

(g

» Parallel / multithreading programming, with underlying threads
safety

L)

e

%

Event-driven programming, with built-in and custom events

e

*

Workflow and visual programming

e

*

[oT and Robotics programming

Two Main Purposes

A/

*¢ An example of software integration: After taking CSE445 and
CSE446, ASU undergraduate students can create such tools.

A/

*¢ A real tool for high school and university students to learning
the first programming language 6

Basic Activities of VIPLE

There are dozen of basic activities, and many
composite services in VIPLE Repository

Basic Activities =
Activity Block
Variable
Calculat : :
Da e — = Valriable: supports basic types (Int32,
ata .
o IDopble, String, Boolean, etc.).
2in
Merge — = (Calculate: Calculate the value of any C#
If ex;iression.
Switeh —— = Pata: Introducing the constant values in
While .
- rﬁular programming language
rea
End While
Comment - 7

Basic Activities (cont.)

» = _Join: proceeds when all threads arrive;

Basic Activities
Activity Block
Vanable
Calculate

Data

“I can be used for waiting parallel data or

Join

Merge

tﬁT[reads.

erge: proceeds when one of the data or
threads arrives. It can be used for waiting
dlternative data, e.g., creating the returning
point of a loop;

—~ #7]f: same as regular programming language

construct; It allows multiple conditions.

ywitch: same as regular programming
inguage construct;

While)

fresk L= While: start a loop;

End While —— = Rreak exits a loop, and
Comment nd While returns to While

Basic Activities (cont.)

|

Basic
Activity

Basic Activities
Activity Block
Variable
Calculate
Data

Join

Merge

If

Switch

While

Break

End While

Comment

&

]

Service Application
S Activity Pl = Ctj:][:]
—

4

» Basic Activity and Activity are
building blocks of a diagram or
flowchart.

» Activity can be wrapped into a service
» Data transfer between

= activities are through global
variables and parameter
passing

= services don’t support global

)

<

L)

(R /

L)

L)

onstruct a composite activity (block or

odule)

General-purpose
and event services

Services

Custom Event

2\

Key Press Event

Key Release Event
Print Line

Random
Simple Dialog
Text to Speech

Timer

VIPLE Services

Generic robotic services

Robot

Robot Color Sensor
Robot Distance Sensor
Robot Drive

Robot Holonomic Drive
Robot Light Sensor

Robot Motor
Robot Motor Encoder

Robot Sound Sensor
Robot Touch Sensor
FRobot+ Move at Power

Robot+ Turn by Degrees

Vendor-specific
robotic services

Lego EV3 Brick

Lego EV3 Color

Lego EV3 Drive

Lego EV3 Drive for Time
Lego EV3 Gyro

Lego EV3 Motor

Lege EV3 Motor by Degrees
Lego EV3 Motor for Time
Lego EV3 Touch Pressed
Lego EV3 Touch Released
Lege EV3 Ultrasonic

10

VIPLE Programming: Output

Data

Hello World
in

String

Basic Activities General-purpose
Activity Block e e and event services
Variable / \

/ \ Custom Event
Calculate / Hello Werld

\ Key Press Event
Data 7 \ =
Join \ Key Release Event
M = 2 | Print Line
=rge b

If - J \ | Random
Switch ¢ rowe |- omm \\ RESTFul Service
While funring Program Simple Dialog
Break Hello VIPLE Text to SPEE":h
End While Timer
Comment - 11

VIPLE Programming: Input

Data

What is your name?

String

& Data Connections

& Connections
From: Tor
DataValue AlertDialog

|§ PromptDialog

\r

-
OK q Cancel

Yalue

Please enter your name

Target

PromptText

|Jchn

| DefaultValue

Stning

What is your name?

Data P
PromptDialog

Calculate

valus

12

VIPLE Programming: Variable and Loop

| Variable Selection

Variable Varisbles:

Counter
NoValue |-, I
Data Variable
; L
Ype:
Int32 Int32 [
Integer "]
Calculate
"The number is " + state.Counter
Data Variable Merge

Int32 _—] If Data
5 g String
Text To Speech

Use state. to Variable
Calculate
access variable “32 . —

13

Activity and Parameter Passing E Data Connections

Target

______________________________________ | Limit

| oK | |Cancel |

% Input Variable Definition n
AlertDialog
Input Variables
Limit
IC\(:I(j d Limit
parameter
Main for the
Modify Inputs: (1 _] activity
\
Type:

Data Variable Calculate

_ p "Counter is " + state.Counter

Int32 -

Integer

instance,Limit == state.Counter
o

Print Line P~ Calculate

Use instance. to

access parameter

Yo

ASU VIPLE is Service Oriented

Service

Client Robotic Applications in VIPLE

—_—
ASU Service and Application Repository

Service
Broker

I\

Y

Robotic services Web services and

and Applications applications
N Y Y

MRDS Workflow ASP Other

- :
VPL oundation Net Frame
L L <4 works

.Net Framework

A

Y

Service
Provider

)& J

15

Converting an Activity into a Service

¢ An activity is a part of an application
¢ It cannot be reused in another application

¢ To convert an activity into a service:
Right click:

| | G3 Copy
X Delete Activity

Flip Connections

Rename GateAND|servicexm

Cpen

Data Connections IJ{ML SEMVICES E*.EEWiCE‘.{ﬂ"ID

Export as Service

16

After a Custom Service is Created

When you “Export as a Service”, you can save the service
anywhere you want.

By default, 1t will be saved into the “CustomServices”
folder in your VIPLE program folder.

When VIPLE is started, all services will be imported into
the VIPLE service list, where you find the other services
like Print Line and Text to Speech.

To delete (remove) a custom service, open the folder
CustomServices and delete the file of the service. After
you restart the service, the custom service will disappear
from the service list.

To share a service in another application, copy the service
file into the CustomServices folder of another application.

17

Calling RESTtul Services

4 RESTful Service Settings

http://venus.eas.asu.edu/\WWSReposito
For unknown values, make a placeholder. / ry/Services/EncryptionRest/Service.s

Expected format for placeholders is an integer v vc/Encrypt?text=Hello
(starting with 0) in curly braces, for example: {0}, p

Endpoint URL: 3ervicesve/Encryptftext=Hello

Return Type: | String b l

Wariahles: Main

& RunWindow ==k

. Main Diagram Running Program

RESTful Service

| Confim || Cancel |

- -
RESTful Service == - _ _ _ | ESTEEE

r B
& RESTHul Service Settings L] B e
L i
For unknown values, make a placehclder, Expected < L

format for placeholders is an integer (starting with C) I
in curly braces, for example: {0}

Endpoint URL: svc/Decryptitext=AdAqmhVEN2A=| &

AdAgmhVENZA=
Hello

N
Return Type: | String -] N\ http://venus.eas.asu.edu/WSRepository/S
_ N ervices/EncryptionRest/Service.svc/Decry
Variables: pt?text=AdAgmhVEN2A=
Confirm] l Cancel]

18

http://venus.eas.asu.edu/WSRepository/Services/EncryptionRest/Service.svc/Decrypt?text=AdAqmhVEN2A=
http://venus.eas.asu.edu/WSRepository/Services/EncryptionRest/Service.svc/Decrypt?text=AdAqmhVEN2A=
http://venus.eas.asu.edu/WSRepository/Services/EncryptionRest/Service.svc/Decrypt?text=AdAqmhVEN2A=
http://venus.eas.asu.edu/WSRepository/Services/EncryptionRest/Service.svc/Encrypt?text=Hello
http://venus.eas.asu.edu/WSRepository/Services/EncryptionRest/Service.svc/Encrypt?text=Hello
http://venus.eas.asu.edu/WSRepository/Services/EncryptionRest/Service.svc/Encrypt?text=Hello

Calling a WSDL Service

If B
Switch L
& CallWsdlIService* - ASU VIPLE While _Main Diagram
File Edit | Services | Run Options Help Break - WSDL Service Print Line
B Add WSDL Service @ Services BN . koncomstringd
Custom Event ’
Basic Activities - Main Lt
. GetRandomString - 7
Activity Block N -
_ Main Diagram GetRandom5tringd = /
Wariable -
GetRandomString3 3 % RunWindow ESNEEN ™=
r i . . Key Press Event 7
'-H- ServiceSelectionWindow /
Key Release Event Running Pregram /
Lego EV32 Brick

¥ ServiceSelectionWindow t<SFTChAr%EKT] v
: Choose Mew Service | - ‘q. !

GetRandomString0 N

GetRandomS5tring
GetRandomS5tring3

Confirm

E
'-ﬂ- ServicellnBox

o ‘

a ~ http://venus.eas.asu.edu/\WSRepository/S
ervices/RandomStringSVC/Service.svc

http://venus.eas.asu.edu/WSRepository/Services/RandomStringSVC/Service.svc
http://venus.eas.asu.edu/WSRepository/Services/RandomStringSVC/Service.svc

Code Activity: Wrap any C# Class into an Activity

4 Input Class Name

Fleass enter a class name.

Code Activity MyCodeActivity

Custom Event
| ok Cancel
Key Press Event & Code Editor L= | O
1 using System; »
Key Release Event 2
3 public class MyCodeActivity : CodeUtilities.CodeBase
Print Line -
5 /S Setting the return type up here allows you to use the “walue™
& /f keyword correctly in connected activities.
F!_and:.m 7 public MyCodeActivity()
g {
- 9 ReturnType = typeof(Double);
RESTful Service o 3
. . 11
S”TIF"E Dlalﬂg 12 // To execute your code, you must override the Execute method.
13 public cverride void Execute()
14 7
TE}i tD SF}EEEh 15 ff Obtain the value of the input to this activity.
. 16 ff The type of this value will depend on what input you pass
T||"|"|EF 17 /f to this activity.
flis Int32 myInput = (Int32)Input.Value;
19
- 28 ff You can use the PrintLine method to print strings
2 Copy 21 ff to the run window during runtime.
% Delete Activity 23 PrintLine({"Hello from MyCodeactivity!™);
Flip Connections 24 /f You can pass output in a similar way.
: 25 Output.value = 3.5;
Edit Code

Sequential vs. Parallel Computing

¢ Sequential version of adding many numbers
sum =),;q1
Main

Main Diagram

Varnable Calculate Calculate

’ ‘ state.sum + state. >

Int32 -

CRR— ‘
Int32

While

Vanable Vanable

Variable
s -5 22—
Int32 - Int32 - Int32 =

Print Line Calculate End While

"The sum from 1 to 1500 1s: * + state.sum

Parallel / Distributed Computing

¢ Parallel version of adding many numbers

Variable
P

Int32 -

Variable While Calculate

state.sum + state.il '

ctate. |1 < 500

Int32 o
Variable Variable Wh|le Calculate

s -
i2 state.suma + state.i? '

sumE state. |E < 1000

500 Int32 = Int32 -
]
Int32 .
Variable Variable While Calculate
L 3 e state.3 <= 1500 [
1000 Int32 . Int32 - - '

Int32

Variable Calculate

state.il = 1

Variable End While

Int32

sum’l

nt32 -
]

] .
‘ Variable Calculate . Variable End While

! i2
Int32 . Int32

Variable Calculate Vanable End While

statedd = 1

sum3

Int32 = Int32
]
Print Line Calculate

“The sum from 0 to 1500 is: * + (statessum + statesum? + state.sum3)

22

Events and Event Handling

** A common technique in distributed computing
= XML validation and handling
= Exceptions and handling
= Mouse click and code processing the click
= Sensory input arrived (touch sensor) and the action
= A timer elapsed and the action

¢ Event-driven computing assumes there are multiple
processors to handle events in parallel

¢ Event handling process
= Class A publishes event delegates (signatures) for
subscription;
= Class B implements an event handler and subscribes to an
event delegate by adding the handler name into the delegate;
= When an event occurs in class A, class A will callback the
handler 1n class B, which handles the event. 73

Events and Event Handling (Contd.)

Class A (event service) Class B (event client)

Events Events taking Event subscribing

Event handling

1

Delegates

(Signatures)

Callbacks

Class C (event client)

Event subscribing

Event handling

24

Concurrency and Events

in Robotics Program
Data and eventJ

outputs (h
Motor 1
Bumper - J
Sensor 4 N
Motor 2
_ J
SCmEL 1 Orchestration - ~
sensor \\\\\\\3
Servo
_ J
4)
Message
BoXx
_ J

@ Event output

Event
P Data output notification

25

Concurrency and Events

in Robotics Programming

+ Handling sensory inputs and controlling actuators
must be dealt with concurrently, as otherwise
sensor 1nputs can easily be 1ignored and actuators
can get starved.

¢ Orchestration and composition should not be in
control flow model. Event-driven model 1s a
better way to handle such applications.

» Event notification can be sensible alone, or in
combination with the return data

26

Event-Driven Notification

q User
L Activity

[Activity /

Service

Event signals, e.qg.,
timer, or
completion

Regular return value

Activity / >(User
Service \ 'L Activity

_—— -

Event signals

27

Event-Driven Programming

VIPLE supports two types General-purpose
of events and event services
** Custom events: — — 1> Custom Event
Allow programmers to _ 7 Key Press Bvent
define an event as an = _|Key Release Event
activity’s output <~ | PrintLine
7 7
Y P 44 il Random
* Built-in events: <\\ RESTELl Seryice
Predefined services m\thg Simple Dialog
VIPLE service list that ™~ _ | Text to Speech
generate events Timer

28

Event-Driven Programming: Custom Event

** Implementing the CountToN activity with event output

Main | CountToM

Madify Inputs: |5}

Calculate

"Counter is " + state.Counter

Text To Speech ’

If Data
EE—
; B String
erge {
- \!‘/
Vanable Variable Calculate

‘ Text To Speech

—

Int3.2 E]

29

Event-Driven Programming: Custom Event

¢ Accessing the custom event

SErVICES -
Custom Event

CountToN

Custom events Custom Event——————————————-

and built-in | Key Press Event
events _ | Key Release Event

If an activity can
generate the same
data, we need to
use event output

Counter generates
different data in each
iteration, it works
Main | CountToN without using events

Main Diagram

Event-Driven Programming: Key Press Event

General-purpose
and event services

Code Activity

Custom Event
Key Press Event }_///
Key Release Event

Print Line

Random

RESTHul Service
simple Dialog
Text to Speech

Timer
|

I Printed 5
———————————————————— second
later

Parity Bit Generation Using Key Press Event

L)

* An ASCII code consists of 7 bits of Os or 1s.
» The 8" bit is often generated for parity checking:

= If the first 7 bits has odd number of 1s, the 8t bit is 0, otherwise,
it 1s 1, to keep the total number of 1s 1s an odd number.

L)

4

L)

L)

R/

* Write a VIPLE application to generate the odd-parity bit of an
ASCII code. Example:

Main | BitCounter | ParityGenerator |

Main Diagram

inputString + parity >

Print Line

