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Application of Visual Programming Languages 

 Most workflow languages today are visualized; 

 Simplified workflow languages are used in education: 
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 MIT: Scratch - Visual Game Programming 

 University of Virginia and Carnegie Mellon:  

 Alice Visual Game Programming 

 MIT App Inventor: Phone App Visual Programming 

 Lego NXT & EV3 – Visual Robotics Application 

Development 

 Microsoft Robotics Developer Studio Visual 

Programming Language (MRDS VPL) 

 ASU VIPLE: Visual IoT/Robotics Programming 

Language Environment 



ASU VIPLE Download Site 

• Download Link: 
    http://venus.eas.asu.edu/WSRepository/VIPLE/  
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VIPLE vs. Workflow Foundation 

5 

Workflow 
Foundation 

ASU 
VIPLE 

XML XAML 
Intermediate 

languages 

.Net Framework 

RESTful and 
WSDL service 

Web 
services 

VIPLE 
Services 

(IoT/Robotics) 
Applications 

(Web) 
Applications 

Markup 

language 

CodeActivity 



VIPLE Programming Paradigms 

VIPLE Features 

 General-purpose control flow programming 

 Service-oriented computing, supporting RESTful and WSDL 

 Parallel / multithreading programming, with underlying threads 

safety 

 Event-driven programming, with built-in and custom events 

 Workflow and visual programming 

 IoT and Robotics programming 
 

Two Main Purposes 

 An example of software integration: After taking CSE445 and 

CSE446, ASU undergraduate students can create such tools. 

 A real tool for high school and university students to learning 

the first programming language 6 



Basic Activities of VIPLE 

 Variable: supports basic types (Int32, 

Double, String, Boolean, etc.). 

 Calculate: Calculate the value of any C# 

expression. 

 Data: Introducing the constant values in 

regular programming language 

 

There are dozen of basic activities, and many 
composite services in VIPLE Repository 
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Basic Activities (cont.) 

 Join: proceeds when all threads arrive;  
It can be used for waiting parallel data or 
threads. 

 Merge: proceeds when one of the data or 
threads arrives. It can be used for waiting 
alternative data, e.g., creating the returning 
point of a loop; 

 If: same as regular programming language 
construct; It allows multiple conditions. 

 Switch: same as regular programming 
language construct; 

 While: start a loop;  

 Break exits a loop, and  

 End While returns to While 
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Basic Activities (cont.) 

Basic 
Activity 

Activity 
Activity 

Service 

 Construct a composite activity (block or 

module) 

Application 

 Basic Activity and Activity are 
building blocks of a diagram or 
flowchart. 

 Activity can be wrapped into a service 

 Data transfer between  

 activities are through global 
variables and parameter 
passing 

 services don’t support global 
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VIPLE Services 
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VIPLE Programming: Output 
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VIPLE Programming: Input 
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VIPLE Programming: Variable and Loop 
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Activity and Parameter Passing 
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ASU VIPLE is Service Oriented 
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Converting an Activity into a Service 

 An activity is a part of an application 

 It cannot be reused in another application 

 To convert an activity into a service:  

Right click: 
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After a Custom Service is Created 

 When you “Export as a Service”, you can save the service 

anywhere you want.  

 By default, it will be saved into the  “CustomServices” 

folder in your VIPLE program folder.  

 When VIPLE is started, all services will be imported into 

the VIPLE service list, where you find the other services 

like Print Line and Text to Speech. 

 To delete (remove) a custom service, open the folder 

CustomServices and delete the file of the service. After 

you restart the service, the custom service will disappear 

from the service list.  

 To share a service in another application, copy the service 

file into the CustomServices folder of another application. 
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Calling RESTful Services 
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Calling a WSDL Service 
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Code Activity: Wrap any C# Class into an Activity 
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Sequential vs. Parallel Computing 
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 Sequential version of adding many numbers 

 sum =  𝑖𝑛
𝑖=0  

 



Parallel / Distributed Computing 

 Parallel version of adding many numbers 
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Events and Event Handling 

 A common technique in distributed computing 
 XML validation and handling 

 Exceptions and handling 

 Mouse click and code processing the click 

 Sensory input arrived (touch sensor) and the action 

 A timer elapsed and the action 

 Event-driven computing assumes there are multiple 

processors to handle events in parallel 

 Event handling process 
 Class A publishes event delegates (signatures) for 

subscription; 

 Class B implements an event handler and subscribes to an 

event delegate by adding the handler name into the delegate; 

 When an event occurs in class A, class A will callback the 

handler in class B, which handles the event. 
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Events and Event Handling (Contd.) 
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Concurrency and Events  

in Robotics Programming 
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Concurrency and Events 

 in Robotics Programming 

 Handling sensory inputs and controlling actuators 

must be dealt with concurrently, as otherwise 

sensor inputs can easily be ignored and actuators 

can get starved.  

 Orchestration and composition should not be in 

control flow model. Event-driven model is a 

better way to handle such applications.  

 Event notification can be sensible alone, or in 

combination with the return data 
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Event-Driven Notification 
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Event-Driven Programming 

VIPLE supports two types 

of events 

 Custom events:  

Allow programmers to 

define an event as an 

activity’s output 

 Built-in events: 

Predefined services in the 

VIPLE service list that 

generate events  
28 

General-purpose 

and event services 



Event-Driven Programming: Custom Event 
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 Implementing the CountToN activity with event output 

 

 



Event-Driven Programming: Custom Event 
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 Accessing the custom event 

 

 Custom events 

and built-in 

events

Counter generates 
different data in each 

iteration, it works 
without using events 

If an activity can 
generate the same 
data, we need to 
use event output 



General-purpose 

and event services 

Event-Driven Programming: Key Press Event 
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Parity Bit Generation Using Key Press Event 

 An ASCII code consists of 7 bits of 0s or 1s.  

 The 8th bit is often generated for parity checking: 

 If the first 7 bits has odd number of 1s, the 8th bit is 0, otherwise, 

it is 1, to keep the total number of 1s is an odd number. 

 Write a VIPLE application to generate the odd-parity bit of an 

ASCII code. Example: 
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